Hypersingular Integral Equations in Fracture Analysis
1st Edition
Description
Hypersingular Integral Equations in Fracture Analysis explains how plane elastostatic crack problems may be formulated and solved in terms of hypersingular integral equations. The unknown functions in the hypersingular integral equations are the crack opening displacements. Once the hypersingular integral equations are solved, the crack tip stress intensity factors, which play an important role in fracture analysis, may be easily computed.
This title consists of six chapters: Elastic crack problems, fracture mechanics, equations of elasticity and finite-part integrals; Hypersingular integral equations for coplanar cracks in anisotropic elastic media; Numerical methods for solving hypersingular integral equations; Hypersingular boundary integral equation method for planar cracks in an anisotropic elastic body; A numerical Green's function boundary integral approach for crack problems; and Edge and curved cracks and piezoelectric cracks.
This book provides a clear account of the hypersingular integral approach for fracture analysis, gives in complete form the hypersingular integral equations for selected crack problems, and lists FORTRAN programs of numerical methods for solving hypersingular integral equations.
Key Features
- Explains the hypersingular integral approach using specific and progressively more complex crack problems
- Gives hypersingular integral equations for selected crack problems in complete form
- Lists computer codes in FORTRAN for the numerical solution of hypersingular integral equations
Readership
Researchers and graduate students in applied mathematics and mechanics
Table of Contents
Elastic crack problems, fracture mechanics, equations of elasticity and finite-part integrals; Hypersingular integral equations for coplanar cracks in anisotropic elastic media; Numerical methods for solving hypersingular integral equations; Hypersingular boundary integral method for arbitrarily oriented planar cracks; Numerical Green’s function boundary element approach; Extensions.
Details
- No. of pages:
- 212
- Language:
- English
- Copyright:
- © Woodhead Publishing 2014
- Published:
- 10th December 2013
- Imprint:
- Woodhead Publishing
- eBook ISBN:
- 9780857094803
- Hardcover ISBN:
- 9780857094797
About the Author
Whye-Teong Ang
Whye-Teong Ang is affiliated with the School of Mechanical and Aerospace Engineering at Nanyang Technical University in Singapore. He has written two books on applied and engineering mathematics, and published over 80 research articles in international journals. He holds a PhD in Applied Mathematics from the University of Adelaide, Australia.
Affiliations and Expertise
Nanyang Technological University, Singapore