COVID-19 Update: We are currently shipping orders daily. However, due to transit disruptions in some geographies, deliveries may be delayed. To provide all customers with timely access to content, we are offering 50% off Science and Technology Print & eBook bundle options. Terms & conditions.
High Dynamic Range Imaging - 1st Edition - ISBN: 9780125852630, 9780080478319

High Dynamic Range Imaging

1st Edition

Acquisition, Display, and Image-Based Lighting

Authors: Erik Reinhard Greg Ward Sumanta Pattanaik Paul Debevec
Hardcover ISBN: 9780125852630
eBook ISBN: 9780080478319
Imprint: Morgan Kaufmann
Published Date: 21st November 2005
Page Count: 520
Sales tax will be calculated at check-out Price includes VAT/GST
Price includes VAT/GST

Institutional Subscription

Secure Checkout

Personal information is secured with SSL technology.

Free Shipping

Free global shipping
No minimum order.

Table of Contents


1 Introduction

2 Light And Color
2.1 Radiometry
2.2 Photometry
2.3 Colorimetry
2.4 Color Spaces
2.5 White Point and Illuminants
2.6 Color Correction
2.7 Color Opponent Spaces
2.8 Color Appearance
2.9 Display Gamma
2.10 Brightness Encoding
2.11 Standard RGB Color Spaces

3 HDR Image Encodings
3.1 LDR versus HDR Encodings
3.2 Applications of HDR Images
3.3 HDR Image Formats
3.4 HDR Encoding Comparison
3.5 Conclusions

4 HDR Image Capture
4.1 Photography and Light Measurement
4.2 HDR Image Capture from Multiple Exposures
4.3 Film Scanning
4.4 Image Registration and Alignment
4.5 The Mean Threshold Bitmap Alignment Technique
4.6 Deriving the Camera Response Function
4.7 Ghost Removal
4.8 Lens Flare Removal
4.9 Direct Capture of HDR Imagery
4.10 Conclusions

5 Display Devices
5.1 Hardcopy Devices
5.2 Softcopy Devices

6 The Human Visual System and HDR Tone Mapping
6.1 Tone-mapping Problem
6.2 Human Visual Adaptation
6.3 Visual Adaptation Models for HDR Tone Mapping
6.4 Background Intensity in Complex Images
6.5 Dynamics of Visual Adaptation
6.6 Summary

7 Spatial Tone Reproduction
7.1 Preliminaries
7.2 Global Operators
7.3 Local Operators
7.4 Summary

8 Frequency Domain And Gradient Domain Tone Reproduction
8.1 Frequency Domain Operators
8.2 Gradient Domain Operators
8.3 Performance
8.4 Discussion

9 Image-Based Lighting
9.1 Introduction
9.2 Basic Image-based Lighting
9.3 Capturing Light Probe Images
9.4 Omnidirectional Image Mappings
9.5 How a Global Illumination Renderer Computes IBL Images
9.6 Sampling Incident Illumination Efficiently
9.7 Simulating Shadows and Scene-Object Interreflection
9.8 Useful IBL Approximations
9.9 Image-based Lighting for Real Objects and People
9.10 Conclusions

List of Symbols


High dynamic range imaging produces images with a much greater range of light and color than conventional imaging. The effect is stunning, as great as the difference between black-and-white and color television. High Dynamic Range Imaging is the first book to describe this exciting new field that is transforming the media and entertainment industries. Written by the foremost researchers in HDRI, it will explain and define this new technology for anyone who works with images, whether it is for computer graphics, film, video, photography, or lighting design.

Key Features

  • Written by the leading researchers in HDRI
    * Covers all the areas of high dynamic range imaging including capture devices, display devices, file formats, dynamic range reduction, and image-based lighting
    * Includes a DVD with over 4 GB of HDR images as well as source code and binaries for numerous tone reproduction operators for Windows, Linux, and Mac OS X


Researchers and developers in computer graphics and the entertainment industry; technical directors in film and photography; anyone who works with images.


No. of pages:
© Morgan Kaufmann 2005
21st November 2005
Morgan Kaufmann
Hardcover ISBN:
eBook ISBN:


"Although High Dynamic Range Imaging is likely a bit technical for the average game artist, it's perfect for programmers, technical artists, or technical directors who are interested in applying this fascinating technology to their games. The text is as essential on the bookshelf as the graphics gems series has been." —Dennis Crowley, Game Developer Magazine

"Here at last is the definitive guide to high dynamic range imaging—a field that is poised to revolutionize the way we view, manipulate and enjoy digital images. The authors provide a detailed review of the basic concepts and methods necessary to incorporate high dynamic range images into any practical application. This book is indispensable to researchers in computer graphics, digital design and visualization; indeed to anyone who cares about the realism and fidelity of the images they use on a daily basis." —Heinrich Bülthoff, Executive Director, Max-Planck-Institute for Biological Cybernetics

"This book is a complete and much needed treatment of high dynamic range (HDR) imaging. It is a comprehensive source for the creation, processing, use and display of HDR images. The authors are leading experts, and are the authors of many of the most commonly used methods in HDR imaging. In particular, this is the first complete collection of tone mapping and image-based lighting, which have become essential topics in computer graphics rendering. The book is written in a style that is pleasant to read, but is also detailed and thorough enough to be used as a reference. Readers will have all they need to work with HDR images, whether they are using commodity cameras and traditional low dynamic range displays, or the newest HDR capture devices and displays." —Holly Rushmeier, Professor of Computer Science, Yale University

"This is a remarkably complete book on one of the most important areas of modern computer graphics by four of the top people in the field. Its clear and detailed treatment of both theory and practice will make it an essential resource for my own work, and I would recommend it to anyone doing computer graphics or imaging." —Peter Shirley, Professor, University of Utah

High Dynamic Range Imaging" is a fantastic overview of the state of the art for some critical concepts in visual effects. It outlines the basic foundations of color theory that are the core of VFX image processing and also serves as a roadmap to the way we will be working in the future. This book should be required reading for any VFX artist doing high-end film work."
"When working on a visual effects film, any images provided by the director of photography are both sacred and fragile. This book explains why and also helps guide the reader to a better understanding of how HDR imagery can eliminate a lot of common LDR problems in the VFX pipeline." —Scott Stokdyk, Visual Effects Supervisor, Sony Pictures Imageworks

"I was very impressed with this book. It is highly topical and relevant at this pivotal time in the technology of image recording and display. Even the average consumer is well aware of monstrous changes in the film industry: digital cameras supplanting film cameras and digital projectors muscling in on film projectors at cinemas. This book is an excellent touchstone of where the industry is and where it will be going in the coming years."
"The book reads very well. It not only works as an excellent reference volume but it reads easily and teaches the subject thoroughly. There's no question that it's going on my bookshelf and I know many artists who will insist on having a copy too."
"Finally, I appreciate that a book about images and perception does not skimp on plates. This is a very pretty book and communicates the problems with images very clearly." —Doug Roble, Creative Director of Software, Digital Domain

"Last week I saw the future: a 50-inch high dynamic range video display. The authors of this book predict that HDR displays may be as little as few years away, but having seen tomorrow, my demand for the technology is now. Fortunately, this book more than satisfies my craving for information on all aspects of high dynamic range imaging. It has brought the future to my reading chair and my software development efforts. It is all that I could (and did) ask for." —Ian Ashdown, President, byHeart Consultants Limited

Ratings and Reviews

About the Authors

Erik Reinhard

Erik Reinhard is assistant professor at the University of Bristol and founder and editor-in-chief (with Heinrich Bülthoff) of ACM Transactions on Applied Perception. He is interested in the interface between visual perception and computer graphics and also in high dynamic range image editing. His work in HDRI includes the SIGGRAPH 2005 Computer Animation Festival contribution Image-based Material Editing, as well as tone reproduction and color appearance algorithms. He holds a BSc and a TWAIO diploma in computer science from Delft University of Technology and a PhD in computer science from the University of Bristol, and was a post-doctoral researcher at the University of Utah.

Affiliations and Expertise

University of Bristol, UK

Greg Ward

Greg Ward is a pioneer in HDRI, having developed the first widely used HDR image file format in 1986 as part of the Radiance lighting simulation system. In 1998 he introduced the more advanced LogLuv TIFF encoding and more recently the backwards-compatible HDR extension to JPEG. He is also the author of the Mac OS X application Photosphere, which provides advanced HDR assembly and cataloging and is freely available from Currently he is collaborating with Sunnybrook Technologies on their HDR display systems. Greg has worked as a part of the computer graphics research community for over 20 years, developing rendering algorithms, reflectance models and measurement systems, tone reproduction operators, image processing techniques, and photo printer calibration methods. His past employers include the Lawrence Berkeley National Laboratory, EPFL Switzerland, SGI, Shutterfly, and Exponent. He holds a bachelor's degree in physics from UC Berkeley and a master's degree in computer science from San Francisco State University. He is currently working as an independent consultant in Albany, California.

Affiliations and Expertise

Independent Consultant, Albany, California, U.S.A.

Sumanta Pattanaik

Sumanta Pattanaik is an associate processor of computer science at the University of Central Florida, Orlando (UCF). His main area of research is realistic rendering where he has been active for over 15 years and has contributed significantly through a number of research publications. His current focus is developing real-time rendering algorithms and modeling natural environments. He is currently serving as the computer graphics category editor of ACM Computing Review. Sumanta received his MS degree in chemistry from Utkal University, India in 1978 and PhD degree in computer science from Birla Institute of Technology and Science in Pilani (BITS-Pilani), India in 1993. Prior to joining UCF he was a research associate at the Program of Computer Graphics at Cornell University, a post-doctoral researcher at the SIAMES program of IRISA/INRIA France, and a senior staff scientist at the National Center of Software Technology, India.

Affiliations and Expertise

University of Central Florida, Orlando, U.S.A.

Paul Debevec

Paul Debevec is a research assistant professor at the University of Southern California and the executive producer of graphics research at USC's Institute for Creative Technologies. Paul's PhD thesis (UC Berkeley, 1996) presented Façade, an image-based modeling and rendering system for creating photoreal architectural models from photographs. Using Façade, he led the creation of virtual cinematography of the Berkeley campus for his 1997 film The Campanile Movie whose techniques were used to create virtual backgrounds in the 1999 film The Matrix. Subsequently he pioneered techniques for illuminating computer-generated scenes with real-world lighting captured through high dynamic range photography, demonstrating new image-based lighting techniques in his films Rendering with Natural Light (1998), Fiat Lux (1999), and The Parthenon (2004). He has also led the design of HDR Shop, the first widely used high dynamic range image editing program. Most recently Paul has led the development of a series of Light Stage devices that allow objects, actors, and performances to be synthetically illuminated with novel lighting. This technique was used to create photoreal digital actors for the film Spider Man 2. Paul received the first ACM SIGGRAPH Significant New Researcher Award in 2001, was named one of the world's top "100 Young Innovators" by MIT's Technology Review in 2002, and was awarded a Lillian Gilbreth Lectureship from the National Academy of Engineering in 2005.

Affiliations and Expertise

Institute for Creative Technologies, University of Southern California, U.S.A.