High Brightness Light Emitting Diodes, Volume 48

1st Edition

Serial Volume Editors: Gerald Stringfellow M. Craford
Hardcover ISBN: 9780127521565
eBook ISBN: 9780080864457
Imprint: Academic Press
Published Date: 8th October 1997
Page Count: 469
231.00 + applicable tax
190.00 + applicable tax
150.00 + applicable tax
250.00 + applicable tax
Unavailable
Compatible Not compatible
VitalSource PC, Mac, iPhone & iPad Amazon Kindle eReader
ePub & PDF Apple & PC desktop. Mobile devices (Apple & Android) Amazon Kindle eReader
Mobi Amazon Kindle eReader Anything else

Institutional Access


Table of Contents

G.B. Stringfellow, Materials Issues in High Brightness Light Emitting Diodes. M.G. Craford, Overview of Device Issues in High Brightness Light Emitting Modes. F.M. Steranka, AlGaAs Red LEDs. C.H. Chen, S.A.Stockman, M.J. Peanasky, and C.P. Kuo, OMVPE Growth of AlGaInP for High-Efficiency Visible Light Emitting Diodes. F.A. Kish and R.M. Fletcher, AlGaInP Light-Emitting Diodes. M.W. Hodapp, Applications for High Brightness LEDs. I. Akasakiand H. Amano, Organometallic Vapor Phase Epitaxy of GaN for High Brightness Blue Light Emitting Diodes. S. Nakamura, III-V Nitride Based uv/Blue/Green/Yellow LEDs and LDs. Subject Index.

Description

Volume 48in the Semiconductors and Semimetals series discusses the physics and chemistry of electronic materials, a subject of growing practical importance in the semiconductor devices industry. The contributors discuss the current state of knowledge and provide insight into future developments of this important field.

Readership

Libraries, researchers, graduate students and practitioners in materials science (electronic materials field), and electrical engineering (field of electronic devices).


Details

No. of pages:
469
Language:
English
Copyright:
© Academic Press 1997
Published:
Imprint:
Academic Press
eBook ISBN:
9780080864457
Hardcover ISBN:
9780127521565

About the Serial Volume Editors

Gerald Stringfellow Serial Volume Editor

Stringfellow was among the pioneers of the organometallic vapor phase epitaxial (OMVPE) growth technique, beginning his work in this area in 1975. He has published over 150 papers on this subject and delivered 30 invited papers at national and international conferences during the last 5 years. This work emphasizes the materials science aspects of OMVPE growth, including the thermodynamic and kinetic aspects of the process, the development of new source materials, and the growth of metastable alloys. The first epitaxial layers of InAsSb in the range of solid immiscibility. InPSb, GaPSb, GaInPSb, GaInAsSb, InAsBi, InSbBi, and InAsSbBi, inside the miscibility gap, were produced in Stringfellow’s group. The growth of immiscible alloys has led to the discovery of atomic scale ordering in many III/V alloys. He and his students recently demonstrated the control of domain size in these ordered materials by using grooves photolithographically produced on the (001) surface. This had resulted in the largest ordered domains ever produced in semiconductor materials. Current research focuses on the ordering mechanism, particularly the effects of surface structure on ordering.Other important work is involved with the development of new procedures for OMVPE. He and his students pioneered the now widely-used tertiarybutylarsine and tertiarybutylphosphine. They also used several other precursors for the first time, including: ethyldimethylindium, triisopropylantimony, triallylantimony, trivinylantimony, and tertiarybutyldimethylantimony.

Affiliations and Expertise

University of Utah, Salt Lake City, U.S.A.

M. Craford Serial Volume Editor

Affiliations and Expertise

Hewlett Packard