COVID-19 Update: We are currently shipping orders daily. However, due to transit disruptions in some geographies, deliveries may be delayed. To provide all customers with timely access to content, we are offering 50% off Science and Technology Print & eBook bundle options. Terms & conditions.
Heterogeneous Media - 1st Edition - ISBN: 9780128198803

Heterogeneous Media

1st Edition

Local Fields, Effective Properties, and Wave Propagation

0.0 star rating Write a review
Author: Sergey Kanaun
Paperback ISBN: 9780128198803
Imprint: Elsevier
Published Date: 1st November 2020
Page Count: 500
Sales tax will be calculated at check-out Price includes VAT/GST

Institutional Subscription

Secure Checkout

Personal information is secured with SSL technology.

Free Shipping

Free global shipping
No minimum order.

Table of Contents

  1. Fields in Homogeneous Media with External and Internal Sources
    2. Volume and Surface Integral Equations for Fields in Heterogeneous Media
    3. Numerical Calculation of Volume and Surface Potentials
    4. Numerical Solution of Volume Integral Equations
    5. Static Problems for a Homogeneous Medium with Isolated Inclusions
    6. Scattering of Plane Monochromatic Waves on an Isolated Inclusion
    7. Homogenization Problem

Description

Heterogeneous Media: Local Fields, Effective Properties, and Wave Propagation outlines new computational methods for solving volume integral equation problems in heterogeneous media. The book starts by surveying the various numerical methods of analysis of static and dynamic fields in heterogeneous media, listing their strengths and weaknesses, before moving onto an introduction of static and dynamic green functions for homogeneous media. Volume and surface integral equations for fields in heterogenous media are discussed next, followed by an overview of explicit formulas for numerical calculations of volume and surface potentials.

The book then segues into Gaussian functions for discretization of volume integral equations for fields in heterogenous media, static problems for a homogeneous host medium with heterogeneous inclusions, volume integral equations for scattering problems, and concludes with a chapter outlining solutions to homogenization problems and calculations of effective properties of heterogeneous media. The book concludes with multiple appendices that feature the texts of basic programs for solving volume integral equations as written in Mathematica.

Key Features

  • Outlines cutting-edge computational methods for solving volume integral equation problems in heterogeneous media
  • Provides applied examples of approximation and other methods being employed
  • Demonstrates calculation of composite material properties and the constitutive laws for averaged fields within them
  • Covers static and dynamic 2D and 3D mechanical-mathematical models for heterogeneous media

Readership

Researchers in mechanical engineering and materials science; graduate students in each of these areas


Details

No. of pages:
500
Language:
English
Copyright:
© Elsevier 2021
Published:
1st November 2020
Imprint:
Elsevier
Paperback ISBN:
9780128198803

Ratings and Reviews


About the Author

Sergey Kanaun

Professor Kanaun is a Professor of Mechanical Engineering at the Technological Institute of Higher Education of Monterrey, State Mexico Campus, Mexico. His core areas of research are continuum mechanics, mechanics of composites, micromechanics, elasticity, plasticity, and fracture mechanics. Prior to his current teaching post he was a Professor at the Technical University of Novosibirsk in Russia and also Chief Researcher at the Institute of Engineering Problems of the Russian Academy of Sciences, Saint Petersburg, also in Russia. He has advised 6 Master’s theses and 5 Ph.D. theses, and has published over 50 articles in peer-reviewed journals.

Affiliations and Expertise

Professor, Technological Institute of Higher Education of Monterrey, State Mexico Campus, Mexico