Handbook of Physical Vapor Deposition (PVD) Processing - 1st Edition - ISBN: 9780815514220, 9780815517634

Handbook of Physical Vapor Deposition (PVD) Processing

1st Edition

Authors: Donald M. Mattox
eBook ISBN: 9780815517634
Hardcover ISBN: 9780815514220
Imprint: William Andrew
Published Date: 31st December 1998
Page Count: 944
Sales tax will be calculated at check-out Price includes VAT/GST
25% off
25% off
25% off
25% off
25% off
20% off
20% off
25% off
25% off
25% off
25% off
25% off
20% off
20% off
25% off
25% off
25% off
25% off
25% off
20% off
20% off
25% off
25% off
25% off
25% off
25% off
20% off
20% off
285.00
213.75
213.75
213.75
213.75
213.75
228.00
228.00
275.00
206.25
206.25
206.25
206.25
206.25
220.00
220.00
175.00
131.25
131.25
131.25
131.25
131.25
140.00
140.00
220.00
165.00
165.00
165.00
165.00
165.00
176.00
176.00
Unavailable
Price includes VAT/GST
× DRM-Free

Easy - Download and start reading immediately. There’s no activation process to access eBooks; all eBooks are fully searchable, and enabled for copying, pasting, and printing.

Flexible - Read on multiple operating systems and devices. Easily read eBooks on smart phones, computers, or any eBook readers, including Kindle.

Open - Buy once, receive and download all available eBook formats, including PDF, EPUB, and Mobi (for Kindle).

Institutional Access

Secure Checkout

Personal information is secured with SSL technology.

Free Shipping

Free global shipping
No minimum order.

Description

This book covers all aspects of physical vapor deposition (PVD) process technology from the characterizing and preparing the substrate material, through deposition processing and film characterization, to post-deposition processing. The emphasis of the book is on the aspects of the process flow that are critical to economical deposition of films that can meet the required performance specifications.

The book covers subjects seldom treated in the literature: substrate characterization, adhesion, cleaning and the processing. The book also covers the widely discussed subjects of vacuum technology and the fundamentals of individual deposition processes. However, the author uniquely relates these topics to the practical issues that arise in PVD processing, such as contamination control and film growth effects, which are also rarely discussed in the literature. In bringing these subjects together in one book, the reader can understand the interrelationship between various aspects of the film deposition processing and the resulting film properties. The author draws upon his long experience with developing PVD processes and troubleshooting the processes in the manufacturing environment, to provide useful hints for not only avoiding problems, but also for solving problems when they arise. He uses actual experiences, called ""war stories"", to emphasize certain points. Special formatting of the text allows a reader who is already knowledgeable in the subject to scan through a section and find discussions that are of particular interest. The author has tried to make the subject index as useful as possible so that the reader can rapidly go to sections of particular interest. Extensive references allow the reader to pursue subjects in greater detail if desired.

The book is intended to be both an introduction for those who are new to the field and a valuable resource to those already in the field. The discussion of transferring technology between R&D and manufacturing provided in Appendix 1, will be of special interest to the manager or engineer responsible for moving a PVD product and process from R&D into production. Appendix 2 has an extensive listing of periodical publications and professional societies that relate to PVD processing. The extensive Glossary of Terms and Acronyms provided in Appendix 3 will be of particular use to students and to those not fully conversant with the terminology of PVD processing or with the English language.

Readership

Engineers, including surface engineering personnel, technicians, and other plant personnel in process industries such as semiconductors and microelectronics. Especially informative for those new to the field.

Table of Contents

  1. Introduction 1.1 Surface Engineering 1.2 Thin Film Processing 1.3 Process Documentation 1.4 Safety and Environmental Concerns 1.5 Units 1.6 Summary
  2. Substrate (""Real"") Surfaces and Surface Modification 2.1 Introduction 2.2 Materials and Fabrication 2.3 Atomic Structure and Atom-Particle Interactions 2.4 Characterization of Surfaces and Near-Surface Regions 2.5 Bulk Properties 2.6 Modification of Substrate Surfaces 2.7 Summary
  3. The Low-Pressure Gas and Vacuum Processing Environment 3.1 Introduction 3.2 Gases and Vapors 3.3 Gas-Surface Interactions 3.4 Vacuum Environment 3.5 Vacuum Processing Systems 3.6 Vacuum Pumping 3.7 Vacuum and Plasma Compatible Materials 3.8 Assembly 3.9 Evaluating Vacuum System Performance 3.10 Purchasing a Vacuum System for PVD Processing 3.11 Cleaning of Vacuum Surfaces 3.12 System-Related Contamination 3.13 Process-Related Contamination 3.14 Treatment of Specific Materials 3.15 Safety Aspects of Vacuum Technology 3.16 Summary
  4. The Low-Pressure Plasma Processing Environment 4.1 Introduction 4.2 The Plasma 4.3 Plasma-Surface Interactions 4.4 Configurations for Generating Plasmas 4.5 Ion and Plasma Sources 4.6 Plasma Processing Systems 4.7 Plasma-Related Contamination 4.8 Some Safety Aspects of Plasma Processing 4.9 Summary
  5. Vacuum Evaporation and Vacuum Deposition 5.1 Introduction 5.2 Thermal Vaporization 5.3 Thermal Vaporization Sources 5.4 Transport of Vaporized Material 5.5 Condensation of Vaporized Material 5.6 Materials for Evaporation 5.7 Vacuum Deposition Configurations 5.8 Process Monitoring and Control 5.9 Contamination from the Vaporization Source 5.10 Advantages and Disadvantages of Vacuum Deposition 5.11 Some Applications of Vacuum Deposition 5.12 Gas Evaporation and Ultrafine Particles 5.13 Other Processes 5.14 Summary
  6. Physical Sputtering and Sputter Deposition (Sputtering) 6.1 Introduction 6.2 Physical Sputtering 6.3 Sputtering Configurations 6.4 Transport of the Sputter-Vaporized Species 6.5 Condensation of the Sputtered Species 6.6 Sputter Deposition Geometrics 6.7 Targets and Target Materials 6.8 Process Monitoring and Control 6.9 Contamination Due to Sputtering 6.10 Advantages and Disadvantages of Sputter Deposition 6.11 Some Applications of Sputter Deposition 6.12 Summary
  7. Arc Vapor Deposition 7.1 Introduction 7.2 Arcs 7.3 Arc Source Configurations 7.4 Reactive Arc Deposition 7.5 Arc Materials 7.6 Arc Vapor Deposition System 7.7 Process Monitoring and Control 7.8 Contamination Due to Arc Vaporization 7.9 Advantages and Disadvantages of Arc Vapor Deposition 7.10 Some Applications of Arc Vapor Deposition 7.11 Summary
  8. Ion Plating and Ion Beam Assisted Deposition 8.1 Introduction 8.2 Stages of Ion Plating 8.3 Sources of Depositing and Reacting Species 8.4 Sources of Energetic Bombarding Species 8.5 Sources of Accelerating Potential 8.6 Some Plasma-Based Ion Plating Configurations 8.7 Ion Beam Assisted Deposition (IBAD) 8.8 Process Monitoring and Control 8.9 Contamination on the Ion Plating Process 8.10 Advantages and Disadvantages of Ion Plating 8.11 Some Applications of Ion Plating 8.12 A Note on Ionized Cluster Beam (ICB) Deposition 8.13 Summary
  9. Atomistic Film Growth and Some Growth-Related Film Properties 9.1 Introduction 9.2 Condensation and Nucleation 9.3 Interface Formation 9.4 Film Growth 9.5 Reactive and Quasi-Reactive Deposition of Films of Compounded Materials 9.6 Post Deposition Processing and Changes 9.7 Deposition of Unique Materials and Structures 9.8 Summary
  10. Film Characterization and Some Basic Film Properties
    10.1 Introduction 10.2 Objectives of Characterization 10.3 Types of Characterization 10.4 Stages and Degree of Characterization 10.5 Some Film Properties 10.6 Summary
  11. Adhesion and Deadhesion 11.1 Introduction 11.2 Origin of Adhesion and Adhesion Failure (Deadhesion) 11.3 Adhesion of Atomistically Deposited Inorganic Films 11.4 Adhesion Failure (Deadhesion) 11.5 Adhesion Testing 11.6 Designing for Good Adhesion 11.7 Failure Analysis 11.8 Summary
  12. Cleaning 12.1 Introduction 12.2 Gross Cleaning 12.3 Specific Cleaning 12.4 Application of Fluids 12.5 Removal of Particulate Contamination 12.6 Rinsing 12.7 Drying, Outgassing, and Outdiffusion 12.8 Cleaning Lines 12.9 Handling and Storage/Transportation 12.10 Evaluation and Monitoring of Cleaning 12.11 In Situ Cleaning 12.12 Contamination of the Film Surface 12.13 Safety 12.14 Summary
  13. External Processing Environment 13.1 Introduction 13.2 Reduction of Contamination 13.3 Materials 13.4 Body Coverings 13.5 Processing Areas 13.6 Summary APPENDIX 1: Reference Material
    APPENDIX 2: Transfer of Technology from R&D to Manufacturing
    Glossary of Terms and Acronyms Used in Surface Engineering

Details

No. of pages:
944
Language:
English
Copyright:
© William Andrew 1998
Published:
Imprint:
William Andrew
eBook ISBN:
9780815517634
Hardcover ISBN:
9780815514220

About the Author

Donald M. Mattox

Don obtained his B.S. degree in Physics from Eastern Kentucky State University. He served as a meteorologist and Air Weather Officer in the USAF during and after the Korean War. After being discharged from the USAF he obtained a M.S. degree in Solid State Physics in 1960 from the University of Kentucky. Don went to work for Sandia National Laboratories in 1961 and retired in 1989 after 28 years as a Member of the Technical Staff and then as a Technical Supervisor. At retirement he was Supervisor of the Surface and Interface Technology Division. After retirement Don acted as a consultant to the vacuum coating industry. Don was President of the American Vacuum Society (now AVS) in 1985. Don was the Technical Director of the Society of Vacuum Coaters (SVC) from 1991 to 2006 and Technical Editor of the SVC publications from 1989 to 2016. In 1988, the 9th International Congress on Vacuum Metallurgy presented him with a commendation, “For outstanding contributions to metallurgical coating technology for the period 1961-1988". In 1995 he was the recipient of the AVS Albert Nerken Award "For his invention of the ion-plating process and its continued development." Don is a Fellow and Emeritus Member of the AVS. In 2007 Don received the SVC Nathaniel H. Sugerman Award from the Society of Vacuum Coaters “For his development of the ion plating process and long-term commitment to education in the vacuum coating community.” Don has written numerous papers and book chapters and has authored and edited several books on PVD processing and the history of vacuum coating.

Affiliations and Expertise

Formerly Technical Director, Society of Vacuum Coaters, Albuquerque, NM, USA

Reviews

If you are new to PVD as I am, you will find this book to be well worth the money. - Amazon.com Review

Ratings and Reviews