Description

The book gives a broad overview of recombinant DNA techniques for the behavioral neuroscientist, with illustrative examples of applications. Species covered include rodents (mainly mice), Drosophila melanogaster, Caenorhabditis elegans and Danio rerio. Experimental techniques required to characterize the behavioral phenotypes of mutant animals is provided. Several aspects of novel molecular-genetic techniques are overviewed and possible research strategies are explained. The sections of the book start with general descriptions of techniques followed by illustrative examples.
It is divided into six sections. Section 1, bioinformatics and genomics research. Section 2, top-down strategies, where the researcher starts with the phenotype and then analyzes the associated genes; bottom-up strategies, where the physiological chain leading to a phenotype is analyzed starting from the gene product. Section 3, transgenic approaches in rodents including overexpressing foreign genes and gene-targeting; systemic manipulation approaches directly targeting the central nervous system and methods used with invertebrates. Section 4, methods used to evaluate relevant behavioral phenotypes, including learning and aggression. Section 5, examples on molecular brain research in man. Section 6, ethical aspects of research in this field.

Table of Contents

Dedication. Preface. Behavioral neurogenetics: the new synthesis (W.E. Crusio, R.T. Gerlai). Acknowledgements. List of Contributors. 1. Neurobehavioral Informatics and Statistics. 1.1. The multi-dimensional database requirements of brain information in the era of rapid gene identification (F.E. Bloom, W.G. Young). 1.2. Bioinformatics and neuroscience in the post-genomic era (B.W.S. Sobral, M.M. Harpold). 1.3. PsycheMap - an online database of psychiatric genetics linkage, association, and genome mapping projects (N.M. Williams, I. Fenton, M.J. Owen). 1.4. Experimental design and statistical inference (D. Wahlsten). 2. Searching for New Genes. 2.1. Spontaneous and Induced Mutations with Effects on Neural and Behavioral Traits. 2.1.1. Mapping single locus mutations in mice: towards gene identification of neurological traits (W.N. Frankel, B.A. Taylor). 2.1.2. Experimental strategies for mapping quantitative trait loci (QTL) analysis in laboratory animals (D.A. Blizard, A. Darvasi). 2.1.3. Linkage strategies for mapping genes for complex traits in man (L. Almasy, J. Blangero). 2.1.4. Genetic association studies in behavioral neuroscience (P. Gorwood). 2.1.5. DNA pooling in allelic association studies (N.M. Williams, M.J. Owen). 2.1.6. Research strategies for the analysis of neurological mutants of the mouse (C. Sotelo, J. Mariani). 2.1.7. Genetic dissection of mouse behavior using induced mutagenesis (L.H. Pinto, J.S. Takahashi). 2.1.8. Mutagenesis in zebra fish: studying the brain dopamine systems (S. Guo, W. Driever, A. Rosenthal). 2.1.9. Behavioral and electrophysiological screens for isolating zebra fish mutants with visual system defects (J.E. Dowling). 2.2. Finding Genes with Phenotypical Effects on Neural and Behavioral Phenotypes on the Basis of Gene-Expression. 2.2.1. Subtractive cDNA hybridization and the brain: then, now and tomorrow (J.B. Watson). 2.2.2. Applying differential display to brain research (C

Details

No. of pages:
962
Language:
English
Copyright:
© 1999
Published:
Imprint:
Elsevier Science
Electronic ISBN:
9780080536866
Print ISBN:
9780444502391
Print ISBN:
9780444549587

About the editors

Wim Crusio

Dr. Wim Crusio is a Research Director with the French National Centre for Scientific Research (Centre National de la Recherche Scientifique, CNRS) and adjunct director of the Institut de Neurosciences Cognitives et Intégratives d'Aquitaine at the University of Bordeaux. Prior to this, he held positions as Professor of Psychiatry in the Brudnick Neuropsychiatric Research Institute at the University of Massachusetts Medical School and as senior researcher at the Universities of Heidelberg (Germany) and Paris V (France). He was one of the founders of the International Behavioural and Neural Genetics Society (IBANGS), founding editor-in-chief of Genes, Brain and Behavior (G2B), and associate editor or member of the editorial board of over a dozen scientific journals, including The Behavioral and Brain Sciences. He regularly serves as reviewer, both for scientific journals and for granting agencies, including the NIH, NSERC, European Union, and others. He is a recipient of the IBANGS Distinguished Service Award.

Reviews

@from:(E.M.C. Skoulakis, Texas A & M, College Station, TX, USA) @qu:(...)the first (volume) to approach brain and behavior research in a truly multi-disciplinary fashion.(...)the book epitomizes the coming of age of molecular and genetic approaches in the understanding of brain function. The greatest strength of the book is that it speaks the language of the experimental psychologist that wants to explore molecular and genetic approaches, and at the same time communicates well with the molecular geneticist searching for behavioral avenues to investigate a phenotype, or establish a model system. For the aficionados, this book offers a reference volume that underscores the current trend for a synthesis of behavioral, molecular and genetic approaches with which to understand the link between genes and molecules, neuronal activity and behavior. As such this manual should be required reading for all newcomers to the field. @source:Trends in Neurosciences