Description

Many food ingredients are supplied in powdered form, as reducing water content increases shelf life and aids ease of storage, handling and transport. Powder technology is therefore of great importance to the food industry. The Handbook of food powders explores a variety of processes that are involved in the production of food powders, the further processing of these powders and their functional properties.

Part one introduces processing and handling technologies for food powders and includes chapters on spray, freeze and drum drying, powder mixing in the production of food powders and safety issues around food powder production processes. Part two focusses on powder properties including surface composition, rehydration and techniques to analyse the particle size of food powders. Finally, part three highlights speciality food powders and includes chapters on dairy powders, fruit and vegetable powders and coating foods with powders.

The Handbook of food powders is a standard reference for professionals in the food powder production and handling industries, development and quality control professionals in the food industry using powders in foods, and researchers, scientists and academics interested in the field.

Key Features

  • Explores the processing and handling technologies in the production of food powders
  • Examines powder properties, including surface composition, shelf life, and techniques used to examine particle size
  • Focusses on speciality powders such as dairy, infant formulas, powdered egg, fruit and vegetable, and culinary and speciality products

Readership

Professionals in the food powder production and handling industries; R&D and QA professionals in the food industry using powders in foods; Professors of food engineering and food science courses

Table of Contents

Contributor contact details

Woodhead Publishing Series in Electronic and Optical Materials

Preface

Chapter 1: Introduction to food powders

Abstract :

1.1 Introduction

1.2 Crystalline and amorphous microstructure of powders

1.3 Cohesive forces in powders

1.4 Adhesive forces and surface energetics

1.5 Stickiness of powders during their formation and handling

1.6 Surface structure of powders

1.7 Packing property of powders

1.8 Fluidity of powders

1.9 Compressibility of powders

1.10 Mixing property of powders

1.11 Segregation of powder particles

1.12 Dust formation and explosion risk

1.13 Hydration property of powders

1.14 Conclusion

Part I: Processing and handling of technologies

Chapter 2: Spray drying for food powder production

Abstract:

2.1 Introduction

2.2 Principles of spray drying

2.3 Spray drying techniques and configurations

2.4 Applications of spray drying in the production of food powder

2.5 Conclusion and future trends

2.6 Sources of further information and advice

Chapter 3: Freeze drying for food powder production

Abstract:

3.1 Introduction

3.2 The freeze drying process

3.3 Comparison to other drying methods

3.4 Freeze drying and powder production

3.5 Applications of freeze drying in the production of food powders

3.6 Conclusions and future trends

Chapter 4: Roller and drum drying for food powder production

Abstract :

4.1 Introduction

4.2 Principles and operation of drum dryers

4.3 Modelling and simulation of drum drying

4.4 Drum drying technology

4.5 Conclusion

4.6 Sources of further information and advice

Chapter 5: Modelling crystallization in spray drying for food powder production

Abstract:

Details

No. of pages:
688
Language:
English
Copyright:
© 2013
Published:
Imprint:
Woodhead Publishing
Print ISBN:
9780857095138
Electronic ISBN:
9780857098672

About the editors

Bhesh Bhandari

Prof. Bhandari has been associated with the University of Queensland for the last 21 years. His research and teaching areas include food materials science, processing, physical and engineering properties of foods. Prof Bhandari has published two co-edited books and more than 200 book chapters and research papers. His publications have been cited nearly 6000 times (2014) and is recognised as one of the leading researchers in glass transition and encapsulation technologies in food science discipline. He has recently patented two significant technologies, a continuous microgel particle formation device for encapsulation of food and pharmaceauticals and a technology to produce ethylene powder by applying materials science approach.

Min Zhang

Professor Min Zhang works at the School of Food Science and Technology, Jiangnan University, China.

Pierre Schuck

Dr Pierre Schuck is a researcher at INRA, France.

Reviews

"Chemical and biological engineers describe different processes that are involved in producing food powders, their further processing, and the functional properties of the powders. Among their topics are spray drying, roller and drum drying, grinding, powder mixing, flow patterns and storage design in handling food powders, the risk of dust explosion,…"--ProtoView.com, March 2014