Handbook of Complex Analysis - 1st Edition - ISBN: 9780444828453, 9780080532813

Handbook of Complex Analysis

1st Edition

Editors: Reiner Kuhnau
eBook ISBN: 9780080532813
Hardcover ISBN: 9780444828453
Imprint: North Holland
Published Date: 5th December 2002
Page Count: 548
Sales tax will be calculated at check-out Price includes VAT/GST
25% off
25% off
25% off
25% off
25% off
20% off
20% off
25% off
25% off
25% off
25% off
25% off
20% off
20% off
25% off
25% off
25% off
25% off
25% off
20% off
20% off
25% off
25% off
25% off
25% off
25% off
20% off
20% off
25% off
25% off
25% off
25% off
25% off
20% off
20% off
140.00
105.00
105.00
105.00
105.00
105.00
112.00
112.00
235.00
176.25
176.25
176.25
176.25
176.25
188.00
188.00
175.00
131.25
131.25
131.25
131.25
131.25
140.00
140.00
19800.00
14850.00
14850.00
14850.00
14850.00
14850.00
15840.00
15840.00
210.00
157.50
157.50
157.50
157.50
157.50
168.00
168.00
Unavailable
Price includes VAT/GST
× DRM-Free

Easy - Download and start reading immediately. There’s no activation process to access eBooks; all eBooks are fully searchable, and enabled for copying, pasting, and printing.

Flexible - Read on multiple operating systems and devices. Easily read eBooks on smart phones, computers, or any eBook readers, including Kindle.

Open - Buy once, receive and download all available eBook formats, including PDF, EPUB, and Mobi (for Kindle).

Institutional Access

Secure Checkout

Personal information is secured with SSL technology.

Free Shipping

Free global shipping
No minimum order.

Description

Geometric Function Theory is a central part of Complex Analysis (one complex variable). The Handbook of Complex Analysis - Geometric Function Theory deals with this field and its many ramifications and relations to other areas of mathematics and physics. The theory of conformal and quasiconformal mappings plays a central role in this Handbook, for example a priori-estimates for these mappings which arise from solving extremal problems, and constructive methods are considered. As a new field the theory of circle packings which goes back to P. Koebe is included. The Handbook should be useful for experts as well as for mathematicians working in other areas, as well as for physicists and engineers.

Key Features

· A collection of independent survey articles in the field of GeometricFunction Theory · Existence theorems and qualitative properties of conformal and quasiconformal mappings · A bibliography, including many hints to applications in electrostatics, heat conduction, potential flows (in the plane)

Readership

Institutes of mathematics (and computer sciences). Institutes of physics and engineering.

Table of Contents

Preface. List of Contributors. Univalent and multivalent functions (W.K. Hayman). Conformal maps at the boundary (Ch. Pommerenke). Extremal quasiconformal mapings of the disk (E. Reich). Conformal welding (D.H. Hamilton). Siegel disks and geometric function theory in the work of Yoccoz (D.H. Hamilton). Sufficient confidents for univalence and quasiconformal extendibility of analytic functions (L.A. Aksent'ev, P.L. Shabalin). Bounded univalent functions (D.V. Prokhorov). The *-function in complex analysis (A. Baernstein II). Logarithmic geometry, exponentiation, and coefficient bounds in the theory of univalent functions and nonoverlapping domains (A.Z. Grinshpan). Circle packing and discrete analytic function theory (K. Stephenson). Extreme points and support points (T.H. MacGregory, D.R. Wilken). The method of the extremal metric (J.A. Jenkins). Universal Teichmüller space (F.P. Gardiner, W.J. Harvey). Application of conformal and quasiconformal mappings and their properties in approximation theory (V.V. Andrievskii). Author Index. Subject Index.

Details

No. of pages:
548
Language:
English
Copyright:
© North Holland 2002
Published:
Imprint:
North Holland
eBook ISBN:
9780080532813
Hardcover ISBN:
9780444828453

About the Editor

Reiner Kuhnau

Affiliations and Expertise

Martin Luther Universität, Halle-Wittenberg, Germany

Reviews

"A thoroughly written author index as well as a subject index simplifies the research for the reader. A well-written book".
Rudolf Rupp - Zeitschrift Fuer Angewandte Mathematik Und Mechanik, 2005.

Ratings and Reviews