Handbook of Complex Analysis

Handbook of Complex Analysis

1st Edition - July 30, 2002

Write a review

  • Editor: Reiner Kuhnau
  • eBook ISBN: 9780080532813
  • Hardcover ISBN: 9780444828453

Purchase options

Purchase options
DRM-free (Mobi, PDF, EPub)
Sales tax will be calculated at check-out

Institutional Subscription

Free Global Shipping
No minimum order


Geometric Function Theory is a central part of Complex Analysis (one complex variable). The Handbook of Complex Analysis - Geometric Function Theory deals with this field and its many ramifications and relations to other areas of mathematics and physics. The theory of conformal and quasiconformal mappings plays a central role in this Handbook, for example a priori-estimates for these mappings which arise from solving extremal problems, and constructive methods are considered. As a new field the theory of circle packings which goes back to P. Koebe is included. The Handbook should be useful for experts as well as for mathematicians working in other areas, as well as for physicists and engineers.

Key Features

· A collection of independent survey articles in the field of GeometricFunction Theory
· Existence theorems and qualitative properties of conformal and quasiconformal mappings
· A bibliography, including many hints to applications in electrostatics, heat conduction, potential flows (in the plane)


Institutes of mathematics (and computer sciences). Institutes of physics and engineering.

Table of Contents

  • Preface.
    List of Contributors.
    Univalent and multivalent functions (W.K. Hayman).
    Conformal maps at the boundary (Ch. Pommerenke).
    Extremal quasiconformal mapings of the disk (E. Reich).
    Conformal welding (D.H. Hamilton).
    Siegel disks and geometric function theory in the work of Yoccoz (D.H. Hamilton).
    Sufficient confidents for univalence and quasiconformal extendibility of analytic functions (L.A. Aksent'ev, P.L. Shabalin).
    Bounded univalent functions (D.V. Prokhorov).
    The *-function in complex analysis (A. Baernstein II).
    Logarithmic geometry, exponentiation, and coefficient bounds in the theory of univalent functions and nonoverlapping domains (A.Z. Grinshpan).
    Circle packing and discrete analytic function theory (K. Stephenson).
    Extreme points and support points (T.H. MacGregory, D.R. Wilken).
    The method of the extremal metric (J.A. Jenkins).
    Universal Teichmüller space (F.P. Gardiner, W.J. Harvey).
    Application of conformal and quasiconformal mappings and their properties in approximation theory (V.V. Andrievskii).
    Author Index.
    Subject Index.

Product details

  • No. of pages: 548
  • Language: English
  • Copyright: © North Holland 2002
  • Published: July 30, 2002
  • Imprint: North Holland
  • eBook ISBN: 9780080532813
  • Hardcover ISBN: 9780444828453

About the Editor

Reiner Kuhnau

Affiliations and Expertise

Martin Luther Universität, Halle-Wittenberg, Germany

Ratings and Reviews

Write a review

There are currently no reviews for "Handbook of Complex Analysis"