Guide to Essential Math

2nd Edition

A Review for Physics, Chemistry and Engineering Students

Authors: Sy Blinder
Hardcover ISBN: 9780124071636
eBook ISBN: 9780124071582
Imprint: Elsevier
Published Date: 1st February 2013
Page Count: 320
Tax/VAT will be calculated at check-out
Compatible Not compatible
VitalSource PC, Mac, iPhone & iPad Amazon Kindle eReader
ePub & PDF Apple & PC desktop. Mobile devices (Apple & Android) Amazon Kindle eReader
Mobi Amazon Kindle eReader Anything else

Institutional Access


This book reminds students in junior, senior and graduate level courses in physics, chemistry and engineering of the math they may have forgotten (or learned imperfectly) that is needed to succeed in science courses. The focus is on math actually used in physics, chemistry, and engineering, and the approach to mathematics begins with 12 examples of increasing complexity, designed to hone the student's ability to think in mathematical terms and to apply quantitative methods to scientific problems. Detailed illustrations and links to reference material online help further comprehension. The second edition features new problems and illustrations and features expanded chapters on matrix algebra and differential equations.

Key Features

  • Use of proven pedagogical techniques developed during the author’s 40 years of teaching experience
  • New practice problems and exercises to enhance comprehension
  • Coverage of fairly advanced topics, including vector and matrix algebra, partial differential equations, special functions and complex variables


Upper-level undergraduates and graduate students in physics, chemistry and engineering

Table of Contents

To the Reader

Preface to Second Edition

Chapter 1. Mathematical Thinking

1.1 The NCAA March Madness Problem

1.2 Gauss and the Arithmetic Series

1.3 The Pythagorean Theorem

1.4 Torus Area and Volume

1.5 Einstein’s Velocity Addition Law

1.6 The Birthday Problem

1.7 Fibonacci Numbers and the Golden Ratio

1.8 in the Gaussian Integral

1.9 Function Equal to Its Derivative

1.10 Stirling’s Approximation for!

1.11 Potential and Kinetic Energies

1.12 Riemann Zeta Function and Prime Numbers

1.13 How to Solve It

1.14 A Note on Mathematical Rigor

Chapter 2. Numbers

2.1 Integers

2.2 Primes

2.3 Divisibility

2.4 Rational Numbers

2.5 Exponential Notation

2.6 Powers of 10

2.7 Binary Number System

2.8 Infinity

Chapter 3. Algebra

3.1 Symbolic Variables

3.2 Legal and Illegal Algebraic Manipulations

3.3 Factor-Label Method

3.4 Powers and Roots

3.5 Logarithms

3.6 The Quadratic Formula

3.7 Imagining i

3.8 Factorials, Permutations and Combinations

3.9 The Binomial Theorem

3.10 e is for Euler

Chapter 4. Trigonometry

4.1 What Use is Trigonometry?

4.2 Geometry of Triangles

4.3 The Pythagorean Theorem

4.4 in the Sky

4.5 Sine and Cosine

4.6 Tangent and Secant

4.7 Trigonometry in the Complex Plane

4.8 de Moivre’s Theorem

4.9 Euler’s Theorem

4.10 Hyperbolic Functions

Chapter 5. Analytic Geometry

5.1 Functions and Graphs

5.2 Linear Functions

5.3 Conic Sections

5.4 Conic Sections in Polar Coordinates

Chapter 6. Calculus

6.1 A Little Road Trip

6.2 A Speedboat Ride

6.3 Differential and Integral Calculus

6.4 Basic Formulas of Di


No. of pages:
© Elsevier 2013
eBook ISBN:
Hardcover ISBN:
Paperback ISBN:

About the Author

Sy Blinder

Affiliations and Expertise

Wolfram Research, Inc., Chicago, IL, USA and University of Michigan, Ann Arbor, USA


"Blinder throws a life saver to upper-level and early graduate students of physics, chemistry, and engineering who passed the prerequisite freshman and sophomore mathematics courses but are now discovering that they did not really learn very much. All the information is still in their heads, he says, it just needs to be found, dusted off, and loosened up with some exercise."--Reference & Research Book News, October 2013