Table of Contents

Dedication

Preface

Introduction

Chapter 1. Describing Inverse Problems

1.1 Formulating Inverse Problems

1.2 The Linear Inverse Problem

1.3 Examples of Formulating Inverse Problems

1.4 Solutions to Inverse Problems

1.5 Problems

REFERENCES

Chapter 2. Some Comments on Probability Theory

2.1 Noise and Random Variables

2.2 Correlated Data

2.3 Functions of Random Variables

2.4 Gaussian Probability Density Functions

2.5 Testing the Assumption of Gaussian Statistics

2.6 Conditional Probability Density Functions

2.7 Confidence Intervals

2.8 Computing Realizations of Random Variables

2.9 Problems

REFERENCES

Chapter 3. Solution of the Linear, Gaussian Inverse Problem, Viewpoint 1: The Length Method

3.1 The Lengths of Estimates

3.2 Measures of Length

3.3 Least Squares for a Straight Line

3.4 The Least Squares Solution of the Linear Inverse Problem

3.5 Some Examples

3.6 The Existence of the Least Squares Solution

3.7 The Purely Underdetermined Problem

3.8 Mixed-Determined Problems

3.9 Weighted Measures of Length as a Type of A Priori Information

3.10 Other Types of A Priori Information

3.11 The Variance of the Model Parameter Estimates

3.12 Variance and Prediction Error of the Least Squares Solution

3.13 Problems

REFERENCES

Chapter 4. Solution of the Linear, Gaussian Inverse Problem, Viewpoint 2: Generalized Inverses

4.1 Solutions Versus Operators

4.2 The Data Resolution Matrix

4.3 The Model Resolution Matrix

4.4 The Unit Covariance Matrix

4.5 Resolution and Covariance of Some Generalized Inverses

4.6 Measures of Goodness of Resolution and Covariance

4.7 Generalized Inverses with Good Resolution and Covariance

4.8 Sidelobes and

Details

No. of pages:
330
Language:
English
Copyright:
© 2012
Published:
Imprint:
Academic Press
eBook ISBN:
9780123977847
Print ISBN:
9780123971609
Print ISBN:
9780128100486