Genome Stability - 1st Edition - ISBN: 9780128033098, 9780128033456

Genome Stability

1st Edition

From Virus to Human Application

Editors: Igor Kovalchuk Olga Kovalchuk
eBook ISBN: 9780128033456
Hardcover ISBN: 9780128033098
Imprint: Academic Press
Published Date: 21st September 2016
Page Count: 712
Sales tax will be calculated at check-out Price includes VAT/GST
Price includes VAT/GST

Institutional Subscription

Secure Checkout

Personal information is secured with SSL technology.

Free Shipping

Free global shipping
No minimum order.


Every species has to preserve the integrity of its genome to ensure faithful passage of genetic information to the progeny. At the same time, there are times during the life of the organism and population in general when a fine balance in genome stability and diversification has to be made to benefit the survival of the species. Genome Stability teaches the reader how various species maintain this fine balance in genome stability and genome diversification in response to their environments.

Genome Stability covers a wide range of topics, including the genome stability of DNA/RNA viruses, prokaryotes, single cell eukaryotes, lower multicellular eukaryotes and mammals. Topics also include major DNA repair mechanisms, the role of chromatin in genome stability, human diseases associated with genome instability as well as changes in genome stability in response to aging. Finally, Genome Stability covers how epigenetic factors contribute to genome stability and how the species pass the memory of the encounters to the progeny, thus influencing the genome of the progeny in an indirect manner. This volume is an essential resource for geneticists, epigeneticists, and molecular biologists who are looking to gain a deeper understanding of this rapidly-expanding field, and can also be of great use to advanced students who are looking to gain additional expertise in genome stability.

Key Features

  • Includes a collection of chapters on genome stability research from various kingdoms, including topics such as epigenetics and transgenerational effects
  • Provides the first comprehensive coverage of the differences in the mechanisms utilized by different organisms to maintain genomic stability
  • Contains applications of genome instability and its effect on human diseases
  • Explains how various species maintain the fine balance in genome stability and genome diversification in response to their environments


Geneticists, clinical researchers, life science researchers, molecular/cellular biologists, advanced undergraduate and graduate students in genetics, molecular biology, cell biology, and biophysics

Table of Contents

1. Genome stability – an evolutionary perspective
Igor Kovalchuk

I. Genome Instability of Viruses

2. Genetic Instability of RNA Viruses
John N. Barr and Rachel Fearns
3. Genome instability in DNA viruses
Rafael Sanjuán, Marianoel Pereira-Gómez, Jennifer Risso

II. Genome instability in Bacteria and Archaea

4. Genome instability in bacteria and archaea: Strategies for maintaining genome stability
Jan-Erik Messling and Ashley B. Williams

5. Genome instability in bacteria: causes and consequences
Ashley B. Williams

6. CRISPR - bacteria immune system
Andrey Golubov

III. Genome Stability of Unicellular Eukaryotes

7. Programmed DNA rearrangement in ciliates
Franziska Jönsson

8. Homologous Recombination and Non-homologous End-joining repair in yeast
Rebecca E. Jones and Timothy C. Humphrey

IV. Genome stability in multicellular eukaryotes

9. Meiotic and Mitotic Recombination: First in Flies
Julie Korda Holsclaw, Talia Hatkevich and  Jeff Sekelsky

10. Genome stability in Drosophila – mismatch repair and genome stability
Tomoe Negishi

11. Genome stability in Caenorhabditis elegans
Matthias Rieckher, Amanda Franqueira C. Lopes and Björn Schumacher

12. Genetic Engineering of Plants using Zn-fingers, TALENs and CRISPRs
Andriy Bilichak and Francois Eudes

13. Plant Genome Stability – General Mechanisms
Andriy Bilichak

V. Genome stability in mammals

14. Cell cycle control and DNA damage signalling in mammals
Valenti Gomez and Alexander Hergovich

15. The role of p53/p21/p16 in DNA damage signalling and DNA repair
Yavuz Kulaberoglu, Ramazan Gundogdu, and Alexander Hergovich

16. Roles of RAD18 in DNA Replication and Post-Replication Repair (PRR)
Cyrus Vaziri, Satoshi Tateishi, Liz Mutter-Rottmayer and Yanzhe Gao

17. Base Excision Repair and Nucleotide Excision Repair
Tadahide Izumi and Isabel Mellon

18. DNA Mismatch Repair in Mammals
Mingzhang Yang and Peggy Hsieh

19. Repair of double strand breaks by non-homologous end joining; its components and their function
Patryk Moskwa

20. Double-Strand Break Repair: Homologous Recombination in Mammalian Cells
Camille Gelot, Tangui Le-Guen, Sandrine Ragu and Bernard S. Lopez

21. Telomere maintenance and genome stability
Wilnelly Hernandez-Sanchez, Mengyuan Xu and Derek J. Taylor

22. The relationship between checkpoint adaptation and mitotic catastrophe in genomic changes in cancer cells
Lucy H. Swift and Roy M. Golsteyn

23. Chromatin, nuclear organization and genome stability in mammals
Lora Boteva, Nick Gilbert

24. Role of DNA methylation in genome stability
Dan Zhou and Keith D. Robertson

25. Non-coding RNAs in genome integrity
Igor Kovalchuk

VI. Human diseases associated with genome instability
26. Human diseases associated with genome instability
Bruno César Feltes, Joice de Faria Poloni, Kendi Nishino Miyamoto and Diego Bonatto

27. Cancer and genomic instability
Wei Wei, Yabin Cheng and Bo Wang

28. Chromatin Modifications in DNA Repair and Cancer
Margaret Renaud-Young, Karl Riabowol and Jennifer Cobb

29. Genomic Instability and Aging – Causes and Consequences
Corinne Sidler

30. Nucleolar contributions to DNA damage response and genomic (in)stability in the nervous system
Michal Hetman

VII. Effect of environment on genome stability

31. Diet and nutrition
Lynnette R. Ferguson

32. Chemical mutagenesis

33. Environmental sources of ionizing radiation and their health consequences
Aaron A. Goodarzi, Alexander Anikin, Dustin D. Pearson

Section VIII. Bystander and transgenerational effects – epigenetic perspective

34. Epigenetics of transgenerational genome instability in mammals

35. Genomic Instability and the Spectrum of Response to Low Radiation Doses
Carmel Mothersill and Colin Seymour

36. Transgenerational genome instability in plants
Igor Kovalchuk

37. Methods for the detection of DNA damage
Denis V. Firsanov, Ljudmila V. Solovjeva, Vyacheslav M. Mikhailov, Maria P. Svetlova

38. Conserved and divergent features of DNA repair. Future perspectives in genome instability research
Igor Kovalchuk


No. of pages:
© Academic Press 2016
Academic Press
eBook ISBN:
Hardcover ISBN:

About the Editor

Igor Kovalchuk

Dr. Igor Kovalchuk is the Principle Investigator in the Plant Biotechnology laboratory at the University of Lethbridge. His lab studies genetic and epigenetic regulation of plant response to stress as well as develops various methods for improvement of plant transformation. He is particularly interested in the transgenerational effects of stress and microevolution of plant stress tolerance/resistance.

He has substantial expertise in plant stress tolerance and plant transgenesis.

Affiliations and Expertise

Principle Investigator, Planet Biotechnology Laboratory, University of Lethbridge, Lethbridge, AB, Canada

Olga Kovalchuk

Dr. Olga Kovalchuk is the Principle Investigator of the Human Epigenetics laboratory at the University of Lethbridge. Her lab studies the role of epigenetic dysregulation in carcinogenesis, epigenetic regulation of the cancer treatment responses, radiation epigenetics and the role of epigenetic changes in genome stability and carcinogenesis, radiation-induced oncogenic signaling, and radiation-induced DNA damage, repair, and recombination.

Affiliations and Expertise

Principle Investigator, Human Epigenetics Laboratory, University of Lethbridge, Lethbridge, AB, Canada


"This book provides a comprehensive overview of genome stability that should be of great interest to any researcher within this area of expertise." --The Quarterly Review of Biology, Vol.92, No. 4

Ratings and Reviews