Gap Junctions: Molecular Basis of Cell Communication in Health and Disease, Volume 49

1st Edition

Serial Volume Editors: Camillo Peracchia
Hardcover ISBN: 9780121533496
eBook ISBN: 9780080585208
Imprint: Academic Press
Published Date: 13th December 1999
Page Count: 648
205.00 + applicable tax
21800.00 + applicable tax
125.00 + applicable tax
155.00 + applicable tax
193.00 + applicable tax
Unavailable
Compatible Not compatible
VitalSource PC, Mac, iPhone & iPad Amazon Kindle eReader
ePub & PDF Apple & PC desktop. Mobile devices (Apple & Android) Amazon Kindle eReader
Mobi Amazon Kindle eReader Anything else

Institutional Access


Table of Contents

Channel Structure, Assembly, and Degradation: Gap Junction Structure: New Structures and New Insights, G. Sosinsky. Degradation of Gap Junctions and Connnexins, J.G. Laing and E.C. Beyer. Channel Forms, Permeability, and Conductance: Homotypic, Heterotypic, and Heteromeric Gap Junction Channels, P.R. Brink, V. Valiunas, and G.J. Christ. Heteromultimeric Gap Junction Channels and Cardiac Disease, S. Elenes and A.P. Moreno. Ion Permeation through Connexin Gap Junction Channels: Effects on Conductance and Selectivity, R.D. Veenstra. Phosphorylation of Connexins: Consequences for Permeability, Conductance, and Kinetics of Gap Junction Channels, H.J. Jongsma, H.V.M. van Rijen, B.R. Kwak, and M. Chanson. Intercellular Calcium Wave Communication via Gap Junction-Dependent and -Independent Mechanisms, E. Scemes, S.O. Suadicani, and D.C. Spray. Voltage Grating: Membrane Potential Dependence of Gap Junctions in Vertebrates, L.C. Barrio, A. Revilla, J.M. Goméz-Hernandez, M. de Miguel, and G. González. A Reexamination of Calcium Effects on Gap Junctions in Heart Myocytes, B. Delage and J. Délèze. Chemical Grating: Distinct Behaviors of Chemical- and Voltage-Sensitive Gates of Gap Junction Channel, F.F. Bukauskas and C. Peracchia. A Molecular Model for the Chemical Regulation of Connexin43 Channels: The "Ball-and-Chain" Hypothesis, M. Delmar, K. Stergiopoulos, Nobuo Homma, G. Calero, G. Morley, J.F. Ek-Vitorin, and S.M. Taffet. Mechanistic Differences between Chemical and Electrical Gating of Gap Junctions, I.M. Skerrett, J.F. Smith, and B.J. Nicholson. Behavior of Chemical- and Slo

Description

Since the first gap junction protein (connexin) was cloned over a decade ago, more than a dozen connexin genes have been cloned. Consequently, a wealth of information on the molecular basis of gap junctional communication has been accumulated. This book pays tribute to this exciting era in the history of cell communication research by documenting the great strides made in this field as a result of the merging of biophysics and molecular biology, two of the most powerful approaches to studying the molecular basis of membrane channel behavior. Twenty-eight comprehensive chapters, authored by internationally recognized leaders in the field, discuss the biophysical, physiological, and molecular characteristics of cell-to-cell communication via gap junctions. Key aspects of molecular structure, formation, gating, conductance, and permeability of vertebrate and invertebrate gap junction channels are highlighted. In addition, a number of chapters focus on recent discoveries that implicate connexin mutations and alterations of gap junctional communication in the pathogenesis of several diseases, including the X-linked Charcot Marie Tooth demyelinating disease, some forms of inherited sensorineural deafness, malignant transformation, cardiac malformations and arrhythmia, eye lens cataract, and Chagas' disease.

Readership

Biophysicists, cell biologists, physiologists, and pathologists.


Details

No. of pages:
648
Language:
English
Copyright:
© Academic Press 2000
Published:
Imprint:
Academic Press
eBook ISBN:
9780080585208
Hardcover ISBN:
9780121533496

Reviews

Since the first gap junction protein (connexin) was cloned over a decade ago, more than a dozen connexin genes have been cloned. Consequently, a wealth of information on the molecular basis of gap junctional communication has been accumulated. This book pays tribute to this exciting era in the history of cell communication research by documenting the great strides made in this field as a result of the merging of biophysics and molecular biology, two of the most powerful approaches to studying the molecular basis of membrane channel behavior. Twenty-eight comprehensive chapters, authored by internationally recognized leaders in the field, discuss the biophysical, physiological, and molecular characteristics of cell-to-cell communication via gap junctions. Key aspects of molecular structure, formation, gating, conductance, and permeability of vertebrate and invertebrate gap junction channels are highlighted. In addition, a number of chapters focus on recent discoveries that implicate connexin mutations and alterations of gap junctional communication in the pathogenesis of several diseases, including the X-linked Charcot Marie Tooth demyelinating disease, some forms of inherited sensorineural deafness, malignant transformation, cardiac malformations and arrhythmia, eye lens cataract, and Chagas' disease.


About the Serial Volume Editors

Camillo Peracchia Serial Volume Editor

Affiliations and Expertise

University of Rochester, New York, U.S.A.