Description

The failure of any welded joint is at best inconvenient and at worst can lead to catastrophic accidents. Fracture and fatigue of welded joints and structures analyses the processes and causes of fracture and fatigue, focusing on how the failure of welded joints and structures can be predicted and minimised in the design process.

Part one concentrates on analysing fracture of welded joints and structures, with chapters on constraint-based fracture mechanics for predicting joint failure, fracture assessment methods and the use of fracture mechanics in the fatigue analysis of welded joints. In part two, the emphasis shifts to fatigue, and chapters focus on a variety of aspects of fatigue analysis including assessment of local stresses in welded joints, fatigue design rules for welded structures, k-nodes for offshore structures and modelling residual stresses in predicting the service life of structures.

With its distinguished editor and international team of contributors, Fracture and fatigue of welded joints and structures is an essential reference for mechanical, structural and welding engineers, as well as those in the academic sector with a research interest in the field.

Key Features

  • Analyses the processes and causes of fracture and fatigue, focusing predicting and minimising the failure of welded joints in the design process
  • Assesses the fracture of welded joints and structure featuring constraint-based fracture mechanics for predicting joint failure
  • Explores specific considerations in fatigue analysis including the assessment of local stresses in welded joints and fatigue design rules for welded structures

Readership

Professionals and academics.

Table of Contents

Contributor contact details

Preface

Introduction

Introduction

Linear elastic fracture mechanics

Fatigue

Layout

Part I: Analysing fracture of welded joints and structures

Chapter 1: Constraint-based fracture mechanics in predicting the failure of welded joints

Abstract:

1.1 Introduction to constraint-based elastic-plastic fracture mechanics

1.2 Constraint parameters

1.3 Tabulation of Q-solutions

1.4 Development of a failure assessment diagram (FAD) approach to incorporate constraint

1.5 Effect of weld mismatch on crack tip constraint

1.6 Full field (local approach) analysis for fracture assessment

1.7 Conclusion

Chapter 2: Constraint fracture mechanics: test methods

Abstract:

2.1 Introduction

2.2 High strains

2.3 Two-parameter fracture mechanics

2.4 Development of the single edge notch tension (SENT) test

2.5 Standardising the single edge notch tension (SENT) test

2.6 Conclusions

2.8 Appendix: Codes and standards

2.9 Nomenclature

Chapter 3: Fracture assessment methods for welded structures

Abstract:

3.1 Introduction

3.2 Development of engineering critical assessment (ECA) methods

3.3 The failure assessment diagram (FAD) concept

3.4 Specific engineering critical assessment (ECA) methods: R6

3.5 Specific engineering critical assessment (ECA) methods: BS 7910/PD6493

3.6 Specific engineering critical assessment (ECA) methods: Structural Integrity Procedures for European Industry (SINTAP)/European Fitness- for-service Network (FITNET)

3.7 Specific engineering critical assessment (ECA) methods: American Petroleum Institute (API)/ American Society for Mechanical Enginners (ASME)

3.8 Future trends

Chapter 4: The use of fracture mechanics in the fatigue analysis of welded joints

Details

No. of pages:
360
Language:
English
Copyright:
© 2011
Published:
Imprint:
Woodhead Publishing
Electronic ISBN:
9780857092502
Print ISBN:
9781845695132
Print ISBN:
9780081017029

About the editor

K Macdonald

Kenneth Macdonald is Professor in the Department of Mechanical and Structural Engineering and Materials Science at the University of Stavanger, Norway.

Reviews

This book is a timely addition to the body of literature on the subject and will be of undoubted value to both researchers and practitioners as a reference of current thinking., Materials World