Polymer matrix composites are increasingly replacing traditional materials, such as metals, for applications in the aerospace, automotive and marine industries. Because of the relatively recent development of these composites there is extensive on-going research to improve the understanding and modelling of their behaviour – particularly their failure processes. As a consequence there is a strong demand among design engineers for the latest information on this behaviour in order to fully exploit the potential of these materials for a wide range of weight-sensitive applications. Failure mechanisms in polymer matrix composites explores the main types of composite failure and examines their implications in specific applications.

Part one discusses various failure mechanisms, including a consideration of manufacturing defects and addressing a variety of loading forms such as impact and the implications for structural integrity. This part also reviews testing techniques and modelling methods for predicting potential failure in composites. Part two investigates the effects of polymer-matrix composite failure in a range of industries including aerospace, automotive and other transport, defence, marine and off-shore applications. Recycling issues and environmental factors affecting the use of composite materials are also considered.

With its distinguished editors and international team of expert contributors Failure mechanisms in polymer matrix composites is a valuable reference for designers, scientists and research and development managers working in the increasing range of industries in which composite materials are extensively used. The book will also be a useful guide for academics studying in the composites field.

Key Features

  • Discusses various failure mechanisms, including manufacturing defects
  • Reviews testing techniques and modelling methods for predicting potential failure
  • Investigates failure in aerospace, automotive, defence, marine and off-shore applications


Designers, scientists,and R&D managers working in these industries; academics researching in composites; other materials engineers working with composite materials in the sports equipment and power generation industries and the military.

Table of Contents

Contributor contact details

Part I: Failure mechanisms

Chapter 1: Progress in failure criteria for polymer matrix composites: A view from the first World-Wide Failure Exercise (WWFE)


1.1 Introduction

1.2 Aims of the first World-Wide Failure Exercise (WWFE)

1.3 Setting up test problems

1.4 Description of available models

1.5 Design problems solved

1.6 Gaps identified

1.7 Current activities

1.1 Conclusions

1.2 Acknowledgements

Chapter 2: Manufacturing defects as a cause of failure in polymer matrix composites


2.1 Introduction and basic requirements

2.2 Sources of variability and defects in composite mouldings

2.3 Impact of residual stresses and geometrical distortions on performance

2.4 Impact of voidage and delaminations on inplane and out-of-plane properties

2.5 Impact of misaligned, wavy and wrinkled reinforcements on in-plane and out-of-plane properties

2.6 Approaches to minimize the impact of manufacturing defects

2.7 Future trends

Chapter 3: Low- and medium-velocity impact as a cause of failure in polymer matrix composites


3.1 Introduction

3.2 Impact damage

3.3 Impact response

3.4 Strength and stability after impact

3.5 Computational models

3.6 Future trends

3.7 Sources of further information and advice

Chapter 4: Structural integrity of polymer matrix composite panels in fire


4.1 Introduction

4.2 Temperature distribution

4.3 Material behavior at elevated temperature

4.4 Global buckling

4.5 Skin wrinkling of sandwich panels

4.6 Plastic micro-buckling

4.7 Other aspects of structural integrity in fire

Chapter 5: Testing the toughness of polymer matrix composites


5.1 Introduction


No. of pages:
© 2012
Woodhead Publishing
Print ISBN:
Electronic ISBN: