Entire Functions

Entire Functions

1st Edition - January 1, 1966

Write a review

  • Author: A. I. Markushevich
  • eBook ISBN: 9781483274904

Purchase options

Purchase options
DRM-free (PDF)
Sales tax will be calculated at check-out

Institutional Subscription

Free Global Shipping
No minimum order

Description

Entire Functions focuses on complex numbers and the algebraic operations on them and the basic principles of mathematical analysis. The book first elaborates on the concept of an entire function, including the natural generalization of the concept of a polynomial and power series. The text then takes a look at the maximum absolute value and the order of an entire function, as well as calculations for the coefficients of power series representing a given function, use of integrals, and complex numbers. The publication elaborates on the zeros of an entire function and the fundamental theorem of algebra and Picard’s little theorem. Calculations for the zeros of an entire function and numerical representations of Liouville's theorem and Picard’s little theorem are presented. The book also examines algebraic relationships and addition theorems, including an explanation of Weierstrass' theorem and Picard’s little theorem. The manuscript is a vital reference for students interested in the numerical approaches involved in entire functions.

Table of Contents


  • Preface

    1. The Concept of an Entire Function

    2. The Maximum Absolute Value and the Order of an Entire Function

    3. The Zeros of an Entire Function

    4. The Fundamental Theorem of Algebra and Picard's Little Theorem

    5. Algebraic Relationships and Addition Theorems

    Appendix

    Index

Product details

  • No. of pages: 110
  • Language: English
  • Copyright: © Elsevier 1966
  • Published: January 1, 1966
  • Imprint: Elsevier
  • eBook ISBN: 9781483274904

About the Author

A. I. Markushevich

Ratings and Reviews

Write a review

There are currently no reviews for "Entire Functions"