COVID-19 Update: We are currently shipping orders daily. However, due to transit disruptions in some geographies, deliveries may be delayed. To provide all customers with timely access to content, we are offering 50% off Science and Technology Print & eBook bundle options. Terms & conditions.
Electrochemical Power Sources: Fundamentals, Systems, and Applications - 1st Edition - ISBN: 9780128194249

Electrochemical Power Sources: Fundamentals, Systems, and Applications

1st Edition

Hydrogen Production by Water Electrolysis

Editors: Tom Smolinka Jurgen Garche
Paperback ISBN: 9780128194249
Imprint: Elsevier
Published Date: 1st September 2021
Page Count: 312
Sales tax will be calculated at check-out Price includes VAT/GST

Institutional Subscription

Secure Checkout

Personal information is secured with SSL technology.

Free Shipping

Free global shipping
No minimum order.


Electrochemical Power Sources: Fundamentals, Systems, and Applications: Hydrogen Production by Water Electrolysis offers a comprehensive overview about different hydrogen production technologies, including their technical features, development stage, recent advances, and technical and economic issues of system integration. Allied processes such as regenerative fuel cells and sea water electrolysis are also covered. For many years hydrogen production by water electrolysis was of minor importance, but research and development in the field has increased significantly in recent years, and a comprehensive overview is missing. This book bridges this gap and provides a general reference to the topic.

Hydrogen production by water electrolysis is the main technology to integrate high shares of electricity from renewable energy sources and balance out the supply and demand match in the energy system. Different electrochemical approaches exist to produce hydrogen from RES (Renewable Energy Sources).  

Key Features

  • Covers the fundamentals of hydrogen production by water electrolysis  
  • Reviews all relevant technologies comprehensively
  • Outlines important technical and economic issues of system integration   
  • Includes commercial examples and demonstrates electrolyzer projects     


Academia (students/researchers, lecturers and professors) at university and other technical colleges; electrochemists, chemists, chemical engineers, electrical and mechanical engineers; developers and manufacturers of water electrolysis components and systems

Table of Contents

1. The importance of water electrolysis for our future energy system
How many GWs do we need in the future
Scope until 2050 including 2030
Literature review
ReMoD-D studies from Fraunhofer ISE should be included

2. Basics of water electrolysis
General principle of water electrolysis
System boundaries
Thermodynamics for both HT and NT water electrolysis in one chapter!!
Kinetic losses of AEL, PEMEL and HTEL
Comparison of efficiencies for HTEL and NTEL

3. Comparison with other hydrogen production processes
Steam reforming as current reference process but based on fossil fuels
Thermolysis (focus: thermochemical cycle as CSP with sulfur-iodine cycle)
Photobiological water splitting (e.g. in an algae bioreactor)
Photocatalytic water splitting
Biomass gasification
Biocatalysed electrolysis
Fermentative hydrogen production

4. Historical outline of water electrolysis
Early developments in the 19th century
Industrial deployment in the first half of the 20th century
North America (USA and Canada)
Asia (Japan and China)
Europe (South Europe with Italy and Switzerland and North Europe with Belgium and Norway
East Europe (Russia and East Germany)

5. Alkaline water electrolysis (AWE)
General principle: half-cell equations
General cell layout
Materials on cell level
Performance data on cell level and system level
Degradation mechanism and life time
System configuration
Highlights of recent years
Main activities (international industrial player)
Outlook of further and new concept

6. PEM water electrolysis (PEMWE)

7. High-temperature steam electrolysis (SOSE)

8. Chlor-alkali electrolysis
Kinetic losses
Main application
Short historical survey

9. Seawater electrolysis

10. Economics of water electrolysis
Investment costs
hydrogen production costs
Typical business models for water electrolysis
Deployment strategies for current and future market models

11. Regenerative FCs
separated and unified systems

12. Selected projects for system integration
one or two demo project per technology (e.g. power to gas)
AWE: 2 MW in Falkenhagen / Germany
PEMWE: 2 MW in Ontario / Canada
SOSE: t.b.d.

13. Hydrogen storage 
All technologies to complement the book and the topics


No. of pages:
© Elsevier 2021
1st September 2021
Paperback ISBN:

About the Editors

Tom Smolinka

Tom Smolinka is the Head of Department for “Chemical Energy Storage” at the Fraunhofer-Institute for Solar Energy Systems ISE in Freiburg, Germany. Since 2000, he has been working in the field of hydrogen technologies (fuel cells, electrolysis, solar hydrogen production and redox flow batteries).

Affiliations and Expertise

Fraunhofer Institute for Solar Energy Systems ISE, Freiburg, Germany

Jurgen Garche

Jurgen Garche

Prof. Dr. Jürgen Garche has more than 40 years of experience in battery and fuel cell research & development. In his academic career the focus was on material research. Thereafter, he worked on and directed cell and system development of conventional (LAB, NiCd, NiMH) and advanced (Li-Ion, NaNiCl2, Redox-Flow) batteries. His experience includes also fuel cells (mainly low temperature FCs) and supercaps. He established the battery & FC division of the ZSW in Ulm (Germany), an industry related R&D institute with about 100 scientists and technicians. His interest in battery safety goes back to the work with the very large battery safety testing center of the ZSW. In 2004 he founded the FC&Battery consulting office FCBAT; furthermore he is a senior professor at Ulm University.

Affiliations and Expertise

Fuel Cell and Battery Consulting, Ulm, Germany

Ratings and Reviews