Description

The author argues that, after five decades of debate about the interactive of solar wind with the magnetosphere, it is time to get back to basics. Starting with Newton's law, this book also examines Maxwell's equations and subsidiary equations such as continuity, constitutive relations and the Lorentz transformation; Helmholtz' theorem, and Poynting's theorem, among other methods for understanding this interaction.

Key Features

  • Includes chapters on prompt particle acceleration to high energies, plasma transfer event, and the low latitude boundary layer
  • More than 200 figures illustrate the text
  • Includes a color insert

Readership

students and research workers in space physics

Table of Contents

  • Dedication
  • Kiruna Meeting
  • Prologue
  • Acknowledgements
  • Chapter 1. Historical introduction
    • 1.1. Early history
    • 1.2. International Geophysical Year (IGY)
    • 1.3. International Magnetospheric Study
    • 1.4. Electric and magnetic fields in space
    • 1.5. Reference frames and frozen fields
    • 1.6. Coronal expansion
    • 1.7. Solar wind
    • 1.8. Magnetosheath
    • 1.9. Magnetopause
    • 1.10. Cause and effect at the magnetopause
    • 1.11. Low-Latitude Boundary Layer
    • 1.12. Discovery of the radiation belt
    • 1.13. The ionosphere
    • 1.14. High frequency wave propagation
    • 1.15. Polar cap during southward Interplanetary Magnetic Field (IMF)
    • 1.16. The aurora and substorms
    • 1.17. Discussion
  • Chapter 2. Approximate methods
    • 2.1. Need for approximate methods
    • 2.2. Circuit analysis
    • 2.3. Basic magnetohydrodynamic equations
    • 2.4. Example of MHD for magnetospheric research
    • 2.5. Discussion
    • 2.6. Summary
  • Chapter 3. Helmholtz’s theorem
    • 3.1. Introduction
    • 3.2. Helmholtz’s theorem
    • 3.3. Maxwell’s equations
    • 3.4. Gauss’s law
    • 3.5. Gauge conditions
    • 3.6. Electrodynamics
    • 3.7. Sporadic magnetopause beams
    • 3.8. Particle simulation in 1-D
    • 3.9. Exceptional electron beam observation
    • 3.10. Other observations of energisation
    • 3.11. Discussion
    • 3.12. Summary
  • Chapter 4. Poynting’s energy conservation theorem
    • 4.1. Introduction
    • 4.2. The electric displacement: D field
    • 4.3. The magnetic field H
    • 4.4. Poynting’s theorem
    • 4.5. Discussion
    • 4.6. Plasma transfer event seen by Cluster
    • 4.7. Three systems
    • 4.8. Scientific paradigms
    • <

Details

No. of pages:
536
Language:
English
Copyright:
© 2011
Published:
Imprint:
Elsevier Science
Print ISBN:
9780444528643
Electronic ISBN:
9780080931654