Earth's Magnetosphere - 1st Edition - ISBN: 9780444528643, 9780080931654

Earth's Magnetosphere

1st Edition

Formed by the Low-Latitude Boundary Layer

Authors: W.J. Heikkila
Hardcover ISBN: 9780444528643
eBook ISBN: 9780080931654
Imprint: Elsevier Science
Published Date: 6th September 2011
Page Count: 536
Tax/VAT will be calculated at check-out
160.00
100.00
124.00
Unavailable
Compatible Not compatible
VitalSource PC, Mac, iPhone & iPad Amazon Kindle eReader
ePub & PDF Apple & PC desktop. Mobile devices (Apple & Android) Amazon Kindle eReader
Mobi Amazon Kindle eReader Anything else

Institutional Access


Description

  • Dedication
  • Kiruna Meeting
  • Prologue
  • Acknowledgements
  • Chapter 1. Historical introduction
    • 1.1. Early history
    • 1.2. International Geophysical Year (IGY)
    • 1.3. International Magnetospheric Study
    • 1.4. Electric and magnetic fields in space
    • 1.5. Reference frames and frozen fields
    • 1.6. Coronal expansion
    • 1.7. Solar wind
    • 1.8. Magnetosheath
    • 1.9. Magnetopause
    • 1.10. Cause and effect at the magnetopause
    • 1.11. Low-Latitude Boundary Layer
    • 1.12. Discovery of the radiation belt
    • 1.13. The ionosphere
    • 1.14. High frequency wave propagation
    • 1.15. Polar cap during southward Interplanetary Magnetic Field (IMF)
    • 1.16. The aurora and substorms
    • 1.17. Discussion
  • Chapter 2. Approximate methods
    • 2.1. Need for approximate methods
    • 2.2. Circuit analysis
    • 2.3. Basic magnetohydrodynamic equations
    • 2.4. Example of MHD for magnetospheric research
    • 2.5. Discussion
    • 2.6. Summary
  • Chapter 3. Helmholtz’s theorem
    • 3.1. Introduction
    • 3.2. Helmholtz’s theorem
    • 3.3. Maxwell’s equations
    • 3.4. Gauss’s law
    • 3.5. Gauge conditions
    • 3.6. Electrodynamics
    • 3.7. Sporadic magnetopause beams
    • 3.8. Particle simulation in 1-D
    • 3.9. Exceptional electron beam observation
    • 3.10. Other observations of energisation
    • 3.11. Discussion
    • 3.12. Summary
  • Chapter 4. Poynting’s energy conservation theorem
    • 4.1. Introduction
    • 4.2. The electric displacement: D field
    • 4.3. The magnetic field H
    • 4.4. Poynting’s theorem
    • 4.5. Discussion
    • 4.6. Plasma transfer event seen by Cluster
    • 4.7. Three systems
    • 4.8. Scientific paradigms
    • 4.9. Summary
  • Chapter 5. Magnetopause
    • 5.1. Introduction
    • 5.2. Solar wind – magnetopause interaction
    • 5.3. ISEE observations
    • 5.4. Profile of magnetopause electron temperature
    • 5.5. Impulsive penetration
    • 5.6. Flux transfer event
    • 5.7. Cluster observations of plasma transfer
    • 5.8. Plasma transfer event
    • 5.9. Skimming orbit of GEOTAIL
    • 5.10. Electric field at high sampling rates
    • 5.11. Discussion
    • 5.12. Summary
  • Chapter 6. High-altitude cusps
    • 6.1. Introduction
    • 6.2. The magnetosheath
    • 6.3. The cusp throat
    • 6.4. Transfer events
    • 6.5. Cusp energetic particles
    • 6.6. Exterior cusp
    • 6.7. Discussion
    • 6.8. Summary
  • Chapter 7. Low-latitude boundary layer
    • 7.1. Introduction
    • 7.2. Comprehensive investigation of low-latitude boundary layer
    • 7.3. Studies with better resolution
    • 7.4. Plasma transfer event
    • 7.5. Identification of cusp and cleft/low-latitude boundary layer
    • 7.6. Qualitative description of low-latitude boundary layer
    • 7.7. Topology of the magnetosphere
    • 7.8. ISEE observations
    • 7.9. Transient penetration
    • 7.10. Massive flow in the boundary layer
    • 7.11. Other observations of the low-latitude boundary layer
    • 7.12. Polar cap during southward interplanetary magnetic field
    • 7.13. Study with southward interplanetary magnetic field
    • 7.14. Polar cap during northward interplanetary magnetic field
    • 7.15. Penetration of interplanetary electric field into magnetosphere
    • 7.16. A study with northward interplanetary magnetic field
    • 7.17. Discussion
    • 7.18. Summary
  • Chapter 8. Driving the plasma sheet
    • 8.1. Introduction
    • 8.2. Transfer of plasma and electric field
    • 8.3. Plasma sheet from low altitude observations
    • 8.4. Plasma sheet observations
    • 8.5. Particle dynamics
    • 8.6. Auroral current circuit
    • 8.7. Key results from SuperDARN, CANOPUS
    • 8.8. Large scale flow dynamics
    • 8.9. Discussions
    • 8.10. Summary
  • Chapter 9. Magnetospheric substorms
    • 9.1. Introduction
    • 9.2. Statistical description of the substorm
    • 9.3. Two models as apparent alternatives
    • 9.4. Substorm disturbance onsets
    • 9.5. Substorm transfer event
    • 9.6. Ion dynamics
    • 9.7. Westward travelling surge
    • 9.8. Bursty bulk flows
    • 9.9. Observations of particle acceleration
    • 9.10. Acceleration of cold plasma
    • 9.11. Discussion
    • 9.12. Summary
  • Chapter 10. Epilogue
    • 10.1. Introduction
    • 10.2. Main arguments in this book
    • 10.3. Substorm transfer event
    • 10.4. Four fundamental processes reexamined
    • 10.5. Final summary
  • References
  • Color plates
  • Index

Key Features

  • Includes chapters on prompt particle acceleration to high energies, plasma transfer event, and the low latitude boundary layer
  • More than 200 figures illustrate the text
  • Includes a color insert

Readership

students and research workers in space physics

Table of Contents

  • Dedication
  • Kiruna Meeting
  • Prologue
  • Acknowledgements
  • Chapter 1. Historical introduction
    • 1.1. Early history
    • 1.2. International Geophysical Year (IGY)
    • 1.3. International Magnetospheric Study
    • 1.4. Electric and magnetic fields in space
    • 1.5. Reference frames and frozen fields
    • 1.6. Coronal expansion
    • 1.7. Solar wind
    • 1.8. Magnetosheath
    • 1.9. Magnetopause
    • 1.10. Cause and effect at the magnetopause
    • 1.11. Low-Latitude Boundary Layer
    • 1.12. Discovery of the radiation belt
    • 1.13. The ionosphere
    • 1.14. High frequency wave propagation
    • 1.15. Polar cap during southward Interplanetary Magnetic Field (IMF)
    • 1.16. The aurora and substorms
    • 1.17. Discussion
  • Chapter 2. Approximate methods
    • 2.1. Need for approximate methods
    • 2.2. Circuit analysis
    • 2.3. Basic magnetohydrodynamic equations
    • 2.4. Example of MHD for magnetospheric research
    • 2.5. Discussion
    • 2.6. Summary
  • Chapter 3. Helmholtz’s theorem
    • 3.1. Introduction
    • 3.2. Helmholtz’s theorem
    • 3.3. Maxwell’s equations
    • 3.4. Gauss’s law
    • 3.5. Gauge conditions
    • 3.6. Electrodynamics
    • 3.7. Sporadic magnetopause beams
    • 3.8. Particle simulation in 1-D
    • 3.9. Exceptional electron beam observation
    • 3.10. Other observations of energisation
    • 3.11. Discussion
    • 3.12. Summary
  • Chapter 4. Poynting’s energy conservation theorem
    • 4.1. Introduction
    • 4.2. The electric displacement: D field
    • 4.3. The magnetic field H
    • 4.4. Poynting’s theorem
    • 4.5. Discussion
    • 4.6. Plasma transfer event seen by Cluster
    • 4.7. Three systems
    • 4.8. Scientific paradigms
    • 4.9. Summary
  • Chapter 5. Magnetopause
    • 5.1. Introduction
    • 5.2. Solar wind – magnetopause interaction
    • 5.3. ISEE observations
    • 5.4. Profile of magnetopause electron temperature
    • 5.5. Impulsive penetration
    • 5.6. Flux transfer event
    • 5.7. Cluster observations of plasma transfer
    • 5.8. Plasma transfer event
    • 5.9. Skimming orbit of GEOTAIL
    • 5.10. Electric field at high sampling rates
    • 5.11. Discussion
    • 5.12. Summary
  • Chapter 6. High-altitude cusps
    • 6.1. Introduction
    • 6.2. The magnetosheath
    • 6.3. The cusp throat
    • 6.4. Transfer events
    • 6.5. Cusp energetic particles
    • 6.6. Exterior cusp
    • 6.7. Discussion
    • 6.8. Summary
  • Chapter 7. Low-latitude boundary layer
    • 7.1. Introduction
    • 7.2. Comprehensive investigation of low-latitude boundary layer
    • 7.3. Studies with better resolution
    • 7.4. Plasma transfer event
    • 7.5. Identification of cusp and cleft/low-latitude boundary layer
    • 7.6. Qualitative description of low-latitude boundary layer
    • 7.7. Topology of the magnetosphere
    • 7.8. ISEE observations
    • 7.9. Transient penetration
    • 7.10. Massive flow in the boundary layer
    • 7.11. Other observations of the low-latitude boundary layer
    • 7.12. Polar cap during southward interplanetary magnetic field
    • 7.13. Study with southward interplanetary magnetic field
    • 7.14. Polar cap during northward interplanetary magnetic field
    • 7.15. Penetration of interplanetary electric field into magnetosphere
    • 7.16. A study with northward interplanetary magnetic field
    • 7.17. Discussion
    • 7.18. Summary
  • Chapter 8. Driving the plasma sheet
    • 8.1. Introduction
    • 8.2. Transfer of plasma and electric field
    • 8.3. Plasma sheet from low altitude observations
    • 8.4. Plasma sheet observations
    • 8.5. Particle dynamics
    • 8.6. Auroral current circuit
    • 8.7. Key results from SuperDARN, CANOPUS
    • 8.8. Large scale flow dynamics
    • 8.9. Discussions
    • 8.10. Summary
  • Chapter 9. Magnetospheric substorms
    • 9.1. Introduction
    • 9.2. Statistical description of the substorm
    • 9.3. Two models as apparent alternatives
    • 9.4. Substorm disturbance onsets
    • 9.5. Substorm transfer event
    • 9.6. Ion dynamics
    • 9.7. Westward travelling surge
    • 9.8. Bursty bulk flows
    • 9.9. Observations of particle acceleration
    • 9.10. Acceleration of cold plasma
    • 9.11. Discussion
    • 9.12. Summary
  • Chapter 10. Epilogue
    • 10.1. Introduction
    • 10.2. Main arguments in this book
    • 10.3. Substorm transfer event
    • 10.4. Four fundamental processes reexamined
    • 10.5. Final summary
  • References
  • Color plates
  • Index

Details

No. of pages:
536
Language:
English
Copyright:
© Elsevier Science 2011
Published:
Imprint:
Elsevier Science
eBook ISBN:
9780080931654
Hardcover ISBN:
9780444528643
Paperback ISBN:
9780444562128

About the Author

W.J. Heikkila

Affiliations and Expertise

University of Texas at Dallas, Dallas, TX, USA