Digital Control Engineering

2nd Edition

Analysis and Design

Authors: M. Sami Fadali Antonio Visioli
Hardcover ISBN: 9780123943910
eBook ISBN: 9780123983244
Imprint: Academic Press
Published Date: 6th September 2012
Page Count: 600
99.95 + applicable tax
60.99 + applicable tax
75.95 + applicable tax
Compatible Not compatible
VitalSource PC, Mac, iPhone & iPad Amazon Kindle eReader
ePub & PDF Apple & PC desktop. Mobile devices (Apple & Android) Amazon Kindle eReader
Mobi Amazon Kindle eReader Anything else

Institutional Access


Digital controllers are part of nearly all modern personal, industrial, and transportation systems. Every senior or graduate student of electrical, chemical or mechanical engineering should therefore be familiar with the basic theory of digital controllers. This new text covers the fundamental principles and applications of digital control engineering, with emphasis on engineering design.

Fadali and Visioli cover analysis and design of digitally controlled systems and describe applications of digital controls in a wide range of fields. With worked examples and Matlab applications in every chapter and many end-of-chapter assignments, this text provides both theory and practice for those coming to digital control engineering for the first time, whether as a student or practicing engineer.

Key Features

  • Extensive Use of computational tools: Matlab sections at end of each chapter show how to implement concepts from the chapter
  • Frees the student from the drudgery of mundane calculations and allows him to consider more subtle aspects of control system analysis and design
  • An engineering approach to digital controls: emphasis throughout the book is on design of control systems. Mathematics is used to help explain concepts, but throughout the text discussion is tied to design and implementation. For example coverage of analog controls in chapter 5 is not simply a review, but is used to show how analog control systems map to digital control systems
  • Review of Background Material: contains review material to aid understanding of digital control analysis and design. Examples include discussion of discrete-time systems in time domain and frequency domain (reviewed from linear systems course) and root locus design in s-domain and z-domain (reviewed from feedback control course)
  • Inclusion of Advanced Topics
  • In addition to the basic topics required for a one semester senior/graduate class, the text includes some advanced material to make it suitable for an introductory graduate level class or for two quarters at the senior/graduate level. Examples of optional topics are state-space methods, which may receive brief coverage in a one semester course, and nonlinear discrete-time systems
  • Minimal Mathematics Prerequisites
  • The mathematics background required for understanding most of the book is based on what can be reasonably expected from the average electrical, chemical or mechanical engineering senior. This background includes three semesters of calculus, differential equations and basic linear algebra. Some texts on digital control require more


Undergraduate and graduate students in digital controls, Control engineers

Table of Contents




New to this edition

Organization of text

Supporting material


Chapter 1. Introduction to Digital Control


1.1 Why digital control?

1.2 The structure of a digital control system

1.3 Examples of digital control system


Chapter 2. Discrete-Time Systems


2.1 Analog systems with piecewise constant inputs

2.2 Difference equations

2.3 The z-transform

2.4 Computer-aided design

2.5 z-Transform solution of difference equations

2.6 The time response of a discrete-time system

2.7 The modified z-transform

2.8 Frequency response of discrete-time systems

2.9 The sampling theorem


Chapter 3. Modeling of Digital Control Systems


3.1 ADC model

3.2 DAC model

3.3 The transfer function of the ZOH

3.4 Effect of the sampler on the transfer function of a cascade

3.5 DAC, analog subsystem, and ADC combination transfer function

3.6 Systems with transport lag

3.7 The closed-loop transfer function

3.8 Analog disturbances in a digital system

3.9 Steady-state error and error constants

3.10 MATLAB commands


Chapter 4. Stability of Digital Control Systems


4.1 Definitions of stability

4.2 Stable z-domain pole locations

4.3 Stability conditions

4.4 Stability determination

4.5 Jury test

4.6 Nyquist criterion


Chapter 5. Analog Control System Design


5.1 Root locus

5.2 Root locus using MATLAB

5.3 Design specifications and the effect of gain variation

5.4 Root locus design

5.5 Empirical tuning of PID controllers


Chapter 6. Digital C


No. of pages:
© Academic Press 2013
Academic Press
eBook ISBN:
Hardcover ISBN:

About the Author

M. Sami Fadali

Antonio Visioli