Digital Control 2000: Past, Present and Future of PID Control

1st Edition

Proceedings of the IFAC Workshop, 5-7 April 2000, Terrassa, Spain

Authors:

Description

At the beginning of the new millennium the PID controller continues to be a key component of industrial control. During this century many different structures of control have been proposed to overcome the limitation of the PID controllers. Because of their simplicity and usefulness, they give a very useful solution to an important part of the industrial processes.

The present-day structure of PID controllers is quite different from the original analog PID controllers. Now the implementation of the PID is based on digital design, these digital PIDs include many algorithms such as anti-wind-up, auto-tuning, adaptive, and fuzzy fine tuning to improve their performances, but the basic actions remain the same.

During the last two decades, the general reluctance of researchers to use PID controllers has begun to disappear. Many of the new capabilities of digital PID controllers have been introduced by the research community. The industrial control users apply these innovations easily, even enthusiastically. PID control has become one of the most important ways for the scientific specialist in control and the users of industrial control to work together.

This workshop was organized so that the scientific world and the industrial control world could meet and discuss the present and future use of PID controllers - the successes and failures of their use and how to determine the limits of performances. This workshop was also useful for learning about control history, since the origin and evolution of PID control can provide us with keys for new development and designs.

Readership

For researchers working towards industrial applications of PID controllers and technologists interested in applying PID controllers in novel situations.

Table of Contents

Keynote Papers. The Past of PID Controllers (S. Bennett). PID-Deadtime Control of Distributed Processes (F.G. Shinskey). The Future of PID Control (K.J. Åstrom, T. Hägglund). New Structures And Design of PID Controllers I. A Repetitive-PD Controller for a Low Order Industrial Plant (R. Costa-Castelló, R. Griñó). PID Robust Model Following Control (S. Skoczowski, S. Domek). A Different Approach to PID Design (K.A. Stillman). On Fractional PID Controllers: A Frequency Domain Approach (B.M Vinagre et al.). A Neuro PID Controller for Complex Dynamic Plants (Q.M. Zhu, K. Warwick). Design of PID Controllers via Frequency Response Approximation (S. Pegel, S. Engell). Tuning Rules for PID Controllers. A Reference Guide to PID Controllers in the Nineties (M. Lelić, Z. Gajić). Automatic Tuning of PID Controllers for MIMO Processes (H. Ono et al.). Control Design for PID Controllers Auto-Tuning Based on Improved Identification (R.R. Pecharromán, F.L. Pagola). Two-Degree-of-Freedom PID Controllers - Their Functions and Optimal Tuning (H. Taguchi, M. Araki). A Complement to Autotuning Methods on PID Controllers (R.F. Garcí, F.J.P. Castelo). Electrical Applications of PID Controllers. Design and Tuning of PI Velocity Regulators for High Performance Drives (J.M. Guerrero et al.). Nonlinear Multivariable Speed and Flux PI Control of Induction Motors (M.K. Maaziz et al.). Modelling and PID Control of a Rotary Dryer (F.R. Rubio et al.). The Generalized PID Controller and Its Application to Control of Ultrasonic and Electric Motors (I. Rusnak). Digital Servo IC for Optical Disc Drives (T.H. Akkermans, S.G. Stan). Tuning Methods of PID Controllers. Nonmodel-Based Explicit Design Relations for PID Controllers (R. Gorez, P. Klàn). Robust Automatic Tuning of an Industria

Details

No. of pages:
618
Language:
English
Copyright:
© 2000
Published:
Imprint:
Pergamon
eBook ISBN:
9780080913100
Print ISBN:
9780080436241

About the authors

T. Escobet

Affiliations and Expertise

Automatic Control Department, Universitat Politecnica de Catalunya, Campus de Terrassa, Rambla de Sant Nebridi 10, 08222 Terrassa, Spain