This book is about neuronal networks within the brain. With roughly 100 billion nerve cells the human brain contains about 3.2 million kilometers of 'wires' to make a million billion of connections between these nerve cells. Nerve cells exchange electrical and chemical signals through these connections and the dynamical patterns of electrical/chemical signals are the basis of all our thinking, memories, consciousness, and control of our behaviour.

How do these networks develop their specific connectivity, what are the patterns of electrical activity that serve such a fundamental role in our cognitive abilities, how can it go wrong in these networks resulting in different types of brain pathologies, such as mental retardation, Alzheimer’s disease, epilepsy or schizophrenia? These questions are among the most fundamental ones in neuroscience and are addressed in this volume. The chapters in this book cover both state-of-the-art broad reviews and in-depth studies of topics selected in order to bridge different levels of neurobiological organization, from the molecular, cellular, neural network to the cognitive level. An excellent example of such a 'red thread' is given by the chapters devoted to the visual system, illustrating the advanced state of understanding of network development, plasticity and functioning of the visual system. Other chapters illustrate how scientific advances are driven by technical developments as shown for multi-electrode recording and life imaging techniques that enable the study of electrical activity simultaneously in many nerve cells.

Table of Contents

List of contributors. Preface. Acknowledgements. I. Neuronal Network Formation. 1. Neuronal network formation in human cerebral cortex G.J.A. Ramakers. II. Molecular and Cell Biological Mechanisms of Neuronal Network Development and Synapse Formation. 2. Regulation of dendritic growth by calcium and neurotrophin signaling P.A. Dijkhuizen and A. Ghosh. 3. Dynamics and pathology of dendritic spines S. Halpain, K. Spencer and S. Graber. 4. Introduction to the seventeenth C.U. Ariëns Kappers Lecture D.F. Swaab, J. van Pelt and M. Hofman. 5. Mechanisms of retinotopic map development: ephs, ephrins, and spontaneous correlated retinal activity D.D.M. O'Leary and T. McLaughlin. 6. Biologically plausible models of neurite outgrowth G. Kiddie, D. McLean, A. Van Ooyen and B. Graham. 7. Competition in neurite outgrowth and the development of nerve connections A. van Ooyen. III. Synapse Rearrangement. 8. Molecular substrates of plasticity in the developing visual cortex S.A. Taha and M.P. Stryker. 9. Excitatory-inhibitory balance controls critical period plasticity in developing visual cortex T.K. Hensch and M. Fagiolini. 10. Structural plasticity in the developing visual system M. Bence and C.N. Levelt. 11. Mechanisms controlling the formation of retinal mosaics E. Novelli, V. Resta and L. Galli-Resta. 12. Laminar circuit formation in the vertebrate retina J.S. Mumm, L. Godinho, J.L. Morgan, D.M. Oakley, E.H. Schroeter and R. O.L. Wong. IV. Structure and Dynamics in Neurons and Neuronal Networks. 13. Dynamics and plasticity i


No. of pages:
© 2005
Elsevier Science
Electronic ISBN:
Print ISBN:

About the editors