Data Science
2nd Edition
Concepts and Practice
Secure Checkout
Personal information is secured with SSL technology.Free Shipping
Free global shippingNo minimum order.
Description
Learn the basics of Data Science through an easy to understand conceptual framework and immediately practice using RapidMiner platform. Whether you are brand new to data science or working on your tenth project, this book will show you how to analyze data, uncover hidden patterns and relationships to aid important decisions and predictions.
Data Science has become an essential tool to extract value from data for any organization that collects, stores and processes data as part of its operations. This book is ideal for business users, data analysts, business analysts, engineers, and analytics professionals and for anyone who works with data.
You’ll be able to:
- Gain the necessary knowledge of different data science techniques to extract value from data.
- Master the concepts and inner workings of 30 commonly used powerful data science algorithms.
- Implement step-by-step data science process using using RapidMiner, an open source GUI based data science platform
Data Science techniques covered: Exploratory data analysis, Visualization, Decision trees, Rule induction, k-nearest neighbors, Naïve Bayesian classifiers, Artificial neural networks, Deep learning, Support vector machines, Ensemble models, Random forests, Regression, Recommendation engines, Association analysis, K-Means and Density based clustering, Self organizing maps, Text mining, Time series forecasting, Anomaly detection, Feature selection and more...
Key Features
- Contains fully updated content on data science, including tactics on how to mine business data for information
- Presents simple explanations for over twenty powerful data science techniques
- Enables the practical use of data science algorithms without the need for programming
- Demonstrates processes with practical use cases
- Introduces each algorithm or technique and explains the workings of a data science algorithm in plain language
- Describes the commonly used setup options for the open source tool RapidMiner
Readership
Business and analytics professionals who use data in everyday work settings: Data analysts, business intelligence, data warehousing, business analysts, IT leadership teams, finance and sales operations; students and instructors of data science courses; users of RapidMiner
Table of Contents
- Introduction
2. Data Science Process
3. Data Exploration
4. Classification
5. Deep Learning
6. Regression Methods
7. Association Analysis
8. Recommendation Engines
9. Clustering
10. Text Mining (renamed to: Natural Language Processing)
11. Time Series Forecasting
12. Anomaly Detection
13. Feature Selection
14. Model Evaluation
15. Efficient Model Execution
16. Getting Started with RapidMiner
Details
- No. of pages:
- 568
- Language:
- English
- Copyright:
- © Morgan Kaufmann 2018
- Published:
- 27th November 2018
- Imprint:
- Morgan Kaufmann
- eBook ISBN:
- 9780128147627
- Paperback ISBN:
- 9780128147610
About the Authors

Vijay Kotu
Vijay Kotu is Vice President of Analytics at ServiceNow. He leads the implementation of large-scale data platforms and services to support the company's enterprise business. He has led analytics organizations for over a decade with focus on data strategy, business intelligence, machine learning, experimentation, engineering, enterprise adoption, and building analytics talent. Prior to joining ServiceNow, he was Vice President of Analytics at Yahoo. He worked at Life Technologies and Adteractive where he led marketing analytics, created algorithms to optimize online purchasing behavior, and developed data platforms to manage marketing campaigns. He is a member of the Association of Computing Machinery and a member of the Advisory Board at RapidMiner.
Affiliations and Expertise
Vice President of Analytics at ServiceNow

Bala Deshpande
Dr. Deshpande has extensive experience in working with companies ranging from startups to Fortune 5 in fields ranging from automotive, aerospace, retail, food, and manufacturing verticals delivering business analysis; designing and developing custom data products for implementing business intelligence, data science, and predictive analytics solutions. He was the Founder of SimaFore, a predictive analytics consulting company which was acquired by Soliton Inc., a provider of testing solutions for the semiconductor industry. He was also the Founding Co-chair of the annual Predictive Analytics World-Manufacturing conference. In his professional career he has worked with Ford Motor Company on their product development, with IBM at their IBM Watson Center of Competence, and with Domino’s Pizza at their data science and artificial intelligence groups. He has a Ph.D. from Carnegie Mellon and an MBA from Ross School of Business, Michigan.
Affiliations and Expertise
Founder, SimaFore
Ratings and Reviews
Request Quote
Tax Exemption
Elsevier.com visitor survey
We are always looking for ways to improve customer experience on Elsevier.com.
We would like to ask you for a moment of your time to fill in a short questionnaire, at the end of your visit.
If you decide to participate, a new browser tab will open so you can complete the survey after you have completed your visit to this website.
Thanks in advance for your time.