Details

No. of pages:
744
Language:
English
Copyright:
© 2012
Published:
Imprint:
Morgan Kaufmann
eBook ISBN:
9780123814807
Print ISBN:
9780123814791

Reviews

"A well-written textbook (2nd ed., 2006; 1st ed., 2001) on data mining or knowledge discovery. The text is supported by a strong outline. The authors preserve much of the introductory material, but add the latest techniques and developments in data mining, thus making this a comprehensive resource for both beginners and practitioners. The focus is data—all aspects. The presentation is broad, encyclopedic, and comprehensive, with ample references for interested readers to pursue in-depth research on any technique. Summing Up: Highly recommended. Upper-division undergraduates through professionals/practitioners." --CHOICE

"This interesting and comprehensive introduction to data mining emphasizes the interest in multidimensional data mining--the integration of online analytical processing (OLAP) and data mining. Some chapters cover basic methods, and others focus on advanced techniques. The structure, along with the didactic presentation, makes the book suitable for both beginners and specialized readers." --ACM’s Computing Reviews.com

"We are living in the data deluge age. The Data Mining: Concepts and Techniques shows us how to find useful knowledge in all that data. Thise 3rd editionThird Edition significantly expands the core chapters on data preprocessing, frequent pattern mining, classification, and clustering. The bookIt also comprehensively covers OLAP and outlier detection, and examines mining networks, complex data types, and important application areas. The book, with its companion website, would make a great textbook for analytics, data mining, and knowledge discovery courses." --Gregory Piatetsky, President, KDnuggets

"Jiawei, Micheline, and Jian give an encyclopaedic coverage of all the related methods, from the classic topics of clustering and classification, to database methods (association rules, data cubes) to more recent and advanced topics (SVD/PCA , wavelets, support vect