Coupled Thermo-Hydro-Mechanical Processes of Fractured Media, Volume 79

1st Edition

Mathematical and Experimental Studies

Editors: O. Stephanson L. Jing C.-F. Tsang
Hardcover ISBN: 9780444825452
eBook ISBN: 9780080542850
Imprint: Elsevier Science
Published Date: 10th February 1997
Page Count: 574
Tax/VAT will be calculated at check-out
Compatible Not compatible
VitalSource PC, Mac, iPhone & iPad Amazon Kindle eReader
ePub & PDF Apple & PC desktop. Mobile devices (Apple & Android) Amazon Kindle eReader
Mobi Amazon Kindle eReader Anything else

Institutional Access

Table of Contents

ITA conceptual introduction to coupled thermo-hydro-mechanical processes in fractured rocks (C.-F. Tsang, O. Stephansson). Validation of mathematical models against experiments for radioactive waste repositories - DECOVALEX experience (L. Jing et al.). Constitutive models for rock joints (Y. Ohnishi et al.). Coupled thermohydroelasticity phenomena in variably saturated fractured porous rocks - formulation and numerical solution (J. Noorishad, C.-F. Tsang). Continuum representation of coupled hydromechanic processes of fractured media: homogenisation and parameter identification (A. Stietel et al.). FEM analysis of coupled THM processes in fractured media with explicit representation of joints (S.-M. Tijani, G. Vouille). Distinct models for the coupled T-H-M processes: theory and implementation (M.P. Ahola et al.). Modelling approaches for discrete fracture network flow analysis (A.W. Herbert). Influence of fictitious outer boundaries on the solution of external field problems (G. Rehbinder). Generic study of coupled THM processes of nuclear waste repositories as far-field initial boundary value problems (BMTI) (A. Millard et al.). Generic study of coupled T-H-M processes of nuclear waste repositories as near-field initial boundary value problems (BMT2) (T. Chan et al.). Generic study of coupled T-H-M processes in the near-field (BMT3) (P. Wilcock). Mathematical simulations of coupled THM processes of Fanay-Augères field test by distinct element and discrete finite element methods (A. Rejeb). Experimental investigation and mathematical simulation of coupled T-H-M processes of the engineered buffer materials, the TC3 problem (T. Fujita et al.). Coupled mechanical shear and hydraulic flow behaviour of natural rock joints (M.P. Ahola et al.). Experimental investigation and mathematical simulation of a borehole injection test in deformabl


This work brings together the results, information and data that emerged from an international cooperative project, DECOVALEX, 1992-1995. This project was concerned with the mathematical and experimental studies of coupled thermo(T) -hydro(H) -mechanical(M) processes in fractured media related to radioactive waste disposal.

The book presents, for the first time, the systematic formulation of mathematical models of the coupled T-H-M processes of fractured media, their validation against theoretical bench-mark tests, and experimental studies at both laboratory and field scales. It also presents, for the first time, a comprehensive analysis of continuum, and discrete approaches to the study of the problems of (as well as a complete description of), the computer codes applied to the studies.

The first two chapters provide a conceptual introduction to the coupled T-H-M processes in fractured media and the DECOVALEX project. The next seven chapters give a state-of-the-art survey of the constitutive models of rock fractures and formulation of coupled T-H-M phenomena with continuum and discontinuum approaches, and associated numerical methods. A study on the three generic Bench-Mark Test problems and six Test Case problems of laboratory and field experiments are reported in chapters 10 to 18. Chapter 19 contains lessons learned during the project.

The research contained in this book will be valuable for designers, practising engineers and national waste management officials who are concerned with planning, design and performance, and safety assessments of radioactive waste repositories. Researchers and postgraduate students working in this field will also find the book of particular relevance.


No. of pages:
© Elsevier Science 1996
Elsevier Science
eBook ISBN:
Hardcover ISBN:

About the Editors

O. Stephanson Editor

Affiliations and Expertise

Royal Institute of Technology, Stockholm, Sweden

L. Jing Editor

Affiliations and Expertise

Royal Institute of Technology, Stockholm, Sweden

C.-F. Tsang Editor

Affiliations and Expertise

Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, CA, USA