COVID-19 Update: We are currently shipping orders daily. However, due to transit disruptions in some geographies, deliveries may be delayed. To provide all customers with timely access to content, we are offering 50% off Science and Technology Print & eBook bundle options. Terms & conditions.
Controller Design for Industrial Robots and Machine Tools - 1st Edition - ISBN: 9780857094629, 9780857094636

Controller Design for Industrial Robots and Machine Tools

1st Edition

Applications to Manufacturing Processes

Authors: F Nagata K Watanabe
Hardcover ISBN: 9780857094629
eBook ISBN: 9780857094636
Imprint: Woodhead Publishing
Published Date: 30th September 2013
Page Count: 260
Sales tax will be calculated at check-out Price includes VAT/GST
Price includes VAT/GST

Institutional Subscription

Secure Checkout

Personal information is secured with SSL technology.

Free Shipping

Free global shipping
No minimum order.


Advanced manufacturing systems are vital to the manufacturing industry. It is well known that if a target work piece has a curved surface, then automation of the polishing process is difficult. Controller design for industrial robots and machine tools presents results where industrial robots have been successfully applied to such surfaces, presenting up to date information on these advanced manufacturing systems, including key technologies. Chapters cover topics such as velocity-based discrete-time control system for industrial robots; preliminary simulation of intelligent force control; CAM system for an articulated industrial robot; a robot sander for artistic furniture; a machining system for wooden paint rollers; a polishing robot for PET bottle blow moulds; and a desktop orthogonal-type robot for finishing process of LED lens cavity; and concludes with a summary. The book is aimed at professionals with experience in industrial manufacturing, and engineering students at undergraduate and postgraduate level.

Key Features

  • Presents results where industrial robots have been used successfully to polish difficult surfaces
  • Presents the latest technology in the field
  • Includes key technology such as customized several position and force controllers


Engineers using industrial robots, NC machine tools, CAD/CAM and related peripheral technologies

Table of Contents

List of figures

List of tables


About the authors


Chapter 1: Velocity-based discrete-time control system with intelligent control concepts for openarchitecture industrial robots


1.1 Background

1.2 Basic Servo System

1.3 Dynamic simulation

1.4 In case of fuzzy control

1.5 In case of neural network

1.6 Conclusion

Chapter 2: Preliminary simulation of intelligent force control


2.1 Introduction

2.2 Impedance model following force control

2.3 Influence of environmental viscosity

2.4 Fuzzy environment model

2.5 Conclusion

Chapter 3: CAM system for articulated-type industrial robot


3.1 Background

3.1 Desired trajectory

3.3 Implementation to industrial robot RV1A

3.4 Experiment

3.5 Passive force control of industrial robot RV1A

3.6 Conclusion

Chapter 4: 3D robot sander for artistically designed furniture


4.1 Background

4.2 Feedfoward position/orientation control based on post-process of CAM

4.3 Hybrid position/force control with weak coupling

4.4 Robotic sanding system for wooden parts with curved surfaces

4.5 Surface-following control for robotic sanding system

4.6 Feedback control of polishing force

4.7 Feedforward and feedback control of position

4.8 Hyper CL data

4.9 Experimental result

4.10 Conclusion

Chapter 5: 3D machining system for artistic wooden paint rollers


5.1 Background

5.2 Conventional five-axis nc machine tool with a tilting head

5.3 Intelligent machining system for artistic design of wooden paint rollers

5.4 Experiments

5.5 Conclusion

Chapter 6: Polishing robot for pet bottle blow molds


6.1 Background

6.2 Generation of multi-axis cutter location data

6.3 Basic Polishing Scheme for a Ball End Abrasive Tool

6.4 Feedback Control of Polishing Force

6.5 Feedforward and Feedback Control of Tool Position

6.6 Update timing of CL data

6.7 Experiment

6.8 Conclusion

Chapter 7: Desktop orthogonal-type robot for LED lens cavities


7.1 Background

7.2 Limitation of a polishing system based on an articulated-type industrial robot

7.3 Desktop orthogonal-type robot with compliance controllability

7.4 Transformation technique of manipulated values from velocity to pulse

7.5 Desired damping considering the critically damped condition

7.6 Design of weak coupling control between force feedback loop and position feedback loop

7.7 Basic experiment

7.8 Frequency characteristics

7.9 Application to finishing an LED lens mold

7.10 Stickslip motion of tool

7.11 Neural Network-Based Stiffness Estimator

7.12 Automatic Tool Truing for Long-Time Lapping Process

7.13 Force Input Device

7.14 Conclusion

Chapter 8: Conclusion





No. of pages:
© Woodhead Publishing 2013
30th September 2013
Woodhead Publishing
Hardcover ISBN:
eBook ISBN:

About the Authors

F Nagata

Fusaomi Nagata is a professor in the Department of Mechanical Engineering, Faculty of Engineering, Tokyo University of Science, Yamaguchi, Japan.

Affiliations and Expertise

Tokyo University of Science

K Watanabe

Keigo Watanabe is a professor in the Department of Intelligent Mechanical Systems, Graduate School of Natural Science and Technology, Okayama University, Japan.

Affiliations and Expertise

Okayama University, Japan

Ratings and Reviews