Description

The biomaterials sector is rapidly expanding and significant advances have been made in the technology of biomedical coatings and materials, which provide a means to improve the wear of joints, change the biological interaction between implant and host and combine the properties of various materials to improve device performance. Coatings for biomedical applications provides an extensive review of coating types and surface modifications for biomedical applications.

The first part of the book explores a range of coating types and their biomedical applications. Chapters look at hydrophilic, mineral and pyrolytic carbon coatings in and ex vivo orthopaedic applications and finally at surface modification and preparation techniques. Part two presents case studies of orthopaedic and ophthalmic coatings, and biomedical applications including vascular stents, cardiopulomonary by-pass equipment and ventricular assist devices.

With its clear structure and comprehensive review of research, Coatings for biomedical applications is a valuable resource to researchers, scientists and engineers in the biomedical industry. It will also benefit anyone studying or working within the biomedical sector, particularly those specialising in biomedical coatings.

Key Features

  • Provides an extensive review of coating types and surface modifications for biomedical applications
  • Chapters look at hydrophilic coatings for biomedical applications in and ex vivo, mineral coatings for orthopaedic applications, pyrolytic carbon coating and other commonly-used biomedical coatings
  • Presents case studies of orthopaedic and ophthalmic coatings, and biomedical applications including vascular stents, cardiopulomonary by-pass equipment and ventricular assist devices

Readership

Medical device designers; biomedical engineers; medical products manufacturers.

Table of Contents

Contributor contact details

Preface

Part I: Coating types and applications

Chapter 1: Hydrophilic coatings for biomedical applications in and ex vivo

Abstract:

1.1 Introduction

1.2 Examples of hydrophilic coatings

1.3 Applications for hydrophilic coatings in the clinical environment (ex vivo)

1.4 Applications for hydrophilic coatings in the clinical environment (in vivo)

1.5 Conclusions and future trends

1.6 Sources of further information

1.8 Appendix: list of suppliers of hydrophilic coatings for biomedical devices

Chapter 2: Mineral coatings for orthopaedic applications

Abstract:

2.1 Introduction

2.2 Important characteristics of mineral coatings

2.3 Coating methods

2.4 Clinical studies

2.5 Future trends

2.6 Sources of further information

Chapter 3: Other commonly used biomedical coatings: pyrolytic carbon coatings

Abstract:

3.1 Introduction

3.2 Carbon solid materials

3.3 Carbon film coatings

3.4 Pyrolytic carbon coatings

3.5 Conclusion

Chapter 4: Electrochemical surface modifications of titanium and titanium alloys for biomedical applications

Abstract:

4.1 Introduction

4.2 Electrochemical treatments

4.3 Future trends in chemical and electrochemical treatments

4.4 Conclusions

4.5 Acknowledgements

4.7 Appendix: list of abbreviations

Chapter 5: Surface preparation techniques for biomedical applications

Abstract:

5.1 Introduction

5.2 Sonication

5.3 Mechanical polishing

5.4 Electropolishing

5.5 Chemical etching

5.6 Plasma treatment

5.7 Priming

5.8 Future trends

5.9 Sources of further information

Chapter 6: Characterisation of biomedical coatings

Abstract:

6.1 Introduction

6.2 Sur

Details

No. of pages:
376
Language:
English
Copyright:
© 2012
Published:
Imprint:
Woodhead Publishing
eBook ISBN:
9780857093677
Print ISBN:
9781845695682

About the editor

Mike Driver

Mike Driver is Biomaterials Business Director at Vertellus Specialties UK Ltd. He has been instrumental in the development of new materials for contact lenses and biocompatible coatings for medical devices.

Affiliations and Expertise

Vertellus, UK

Reviews

The biomaterials sector is rapidly expanding and significant advances have been made in the technology of biomedical coatings and materials, which provide a means to improve the wear of joints, change the biological interaction between implant and host and combine the properties of various materials to improve device performance. Coatings for biomedical applications provides an extensive review of coating types and surface modifications for biomedical applications.

The first part of the book explores a range of coating types and their biomedical applications. Chapters look at hydrophilic, mineral and pyrolytic carbon coatings in and ex vivo orthopaedic applications and finally at surface modification and preparation techniques. Part two presents case studies of orthopaedic and ophthalmic coatings, and biomedical applications including vascular stents, cardiopulomonary by-pass equipment and ventricular assist devices.

With its clear structure and comprehensive review of research, Coatings for biomedical applications is a valuable resource to researchers, scientists and engineers in the biomedical industry. It will also benefit anyone studying or working within the biomedical sector, particularly those specialising in biomedical coatings.