Coastal Acoustic Tomography - 1st Edition - ISBN: 9780128185070

Coastal Acoustic Tomography

1st Edition

Authors: Arata Kaneko Xiao-Hua Zhu Ju Lin
Paperback ISBN: 9780128185070
Imprint: Elsevier
Published Date: 1st February 2020
Page Count: 376
Sales tax will be calculated at check-out Price includes VAT/GST

Institutional Subscription

Secure Checkout

Personal information is secured with SSL technology.

Free Shipping

Free global shipping
No minimum order.

Description

Coastal Acoustic Tomography begins with the specifics required for designing a Coastal Acoustic Tomography (CAT) experiment and operating the CAT system in coastal seas. Following sections discuss the procedure for data analyses and various application examples of CAT to coastal/shallow seas (obtained in various locations). These sections are broken down into four kinds of methods: horizontal-slice inversion, vertical-slice inversion, modal expansion method and data assimilation. This book emphasizes how dynamic phenomena occurring in coastal/shallow seas can be analyzed using the standard method of inversion and data assimilation.

The book is relevant for physical oceanographers, ocean environmentalists and ocean dynamists, focusing on the event being observed rather than the intrinsic details of observational processes. Application examples of successful dynamic phenomena measured by coastal acoustic tomography are also included.

Key Features

  • Provides the information needed for researchers and graduate students in physical oceanography, ocean-fluid dynamics and ocean environments to apply Ocean Acoustic Tomography (OAT) to their own fields
  • Presents the benefits of using acoustic tomography, including less disturbance to aquatic environments vs. other monitoring methods
  • Includes the assimilation of CAT data into a coastal sea circulation model, a powerful tool to predict coastal-sea environmental changes

Readership

Physical oceanographers, ocean environmentalists, dynamists and engineers

Table of Contents

Section I: Basic Knowledge on Coastal Acoustic Tomography
Chapter 1 Necessary-minimum Knowledge (Kaneko)
1.1 Fundamentals of ocean acoustic tomography
1.2 History of ocean acoustic tomography
1.3 Societal importance and difficulty of coastal seas
Chapter 2 Instrumentation (Kaneko)
2.1 System design
2.2 Field deployment methods
2.3 Transmit signals
2.4 Cross-correlation calculation
2.5 Processing the received data
Chapter 3 Mirror Functionality Equipment (Kaneko)

Section II Formulation and Methods
Chapter 4 Range-average measurement (Kaneko)
4.1 Vertical-section average current and sound speed
4.2 Resolution and errors
4.3 Position correction
4.4 Clock correction
4.5 Conversion from range-average current to along-strait current using SSH data
4.6 Conversion from two range-average currents to (east, north) currents 7.7 Vorticity and divergence
4.8 Validation of the observed data
Chapter 5 Forward Formulation (Kaneko)
5.1 Sound speed equation
5.2 Ray simulation
5.3 Mode simulation
5.4 Path-integral equation
Chapter 6 Tomographic Inversion on a Horizontal Slice (Zhu)
6.1 Function expansion method
6.2 Grid-segmented method
6.3 Adding coast conditions
6.4 Inversion errors
Chapter 7 Tomographic Inversion on a Vertical-slice (Kaneko)
7.1 Regularized inversion
7.2 Modal inversion
7.3 Combing vertical- and horizontal-slice inversion
Chapter 8 Modal Function Expansion with coast constraints (Lin)
Chapter 9 Data Assimilation (Kaneko, Lin)
9.1 Conventional ensemble Kalman filter
9.2 Time-efficient ensemble Kalman filter Section Ⅲ Field applications
Chapter 10 Field Applications for Horizontal-Slice Inversion (Zhu)
10.1 Nekoseto Channel (Japan)
10.2 Tokyo Bay (Japan)
10.3 Kanmon Strait (Japan)
10.4 Zhitouyang Bay (China)
10.5 Hiroshima Bay (Japan)
10.6 Bali Strait (June 2016, Indonesia)
10.7 Darien Bay
Chapter 11 Field Applications for Vertical-Slice Inversion (Kaneko)
11.1 Luzon Strait
11.2 Bali Strait (June 2015, Indonesia))
Chapter 12 Field Applications for the Modal Expansion Method with Coast-Constraints (Lin)
12.1 Hiroshima Bay
12.2 Jiaozhou Bay (China) Chapter
13 Field Applications for Data Assimilation (Zhu, Lin, Kaneko)
13.1 Nekoseto Channel
13.2 Kanmon Strait
13.3 Sanmen Bay (China)
13.4 Hiroshima Bay
13.5 Bali Strait (June 2016, Indonesia)
Chapter 14 Application to large laboratory tanks (Kaneko)

Details

No. of pages:
376
Language:
English
Copyright:
© Elsevier 2020
Published:
1st February 2020
Imprint:
Elsevier
Paperback ISBN:
9780128185070

About the Author

Arata Kaneko

Professor Kaneko started his academic career as a research associate in Kyushu University. In 1980, during his time as a research associate in the Research Institute for Applied Mechanics (RIAM), Kyushu University, he was awarded Doctor of Engineering. In 1981, he was promoted as an associate professor in RIAM. After that, he shifted research field from the nearshore fluid dynamics to open-ocean fluid dynamics and started a challenging structural observation of ocean currents such as the Kuroshio Current and Tsushima Warm Current, using a newly-developed towed-type acoustic Doppler current profiler (ADCP). From 1985 to 1986, Professor Kaneko worked at Woods Hole Oceanographic Institution, extending his research to ocean acoustic tomography (OAT). In 1991, he moved to the Graduate School of Engineering, Hiroshima University, as a full professor. At this time Kaneko set up a lab studying OAT and began exploring the now well-established technology and method of applying OAT to coastal sea study, with more acoustic complexity. The coastal acoustic tomography (CAT) group, which was established in Hiroshima University and composed of research staff and graduate students educated in Kaneko’s laboratory, have visualized (mapped) variable coastal currents with methods combined by inversion and data assimilation in the last two decades and results have been released to the international oceanographic community

Affiliations and Expertise

Graduate School of Engineering, Hiroshima University, Japan

Xiao-Hua Zhu

Xiao-Hua Zhu received a Ph.D. in physical oceanography from Hiroshima University. He was a post-doctoral fellow at Chugoku National Industrial Research Institute (CNIRI), Ministry of Economy, Trade and Industry of Japan. After this Zhu moved to the Frontier Observational Research System for Global Change (FORSGC)/Japan Agency for Marin-Earth Science and Technology (JMASTEC) as a Research Scientist and started the mooring observations to measure the Kuroshio and Ryukyu Current in both sides of the Ryukyu Island by the Pressure-recording Inverted Echo Sounders (PIESs), moored ADCP and currentmeters. In 2006, he became a Senior Research Scientist of the State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, State Oceanic Administration of China. Since then, he imported the coastal acoustic tomography (CAT) systems from Hiroshima University-related incubation company (Aqua Environmental Monitoring Limited Liability Partnership) and successfully carried out the CAT experiments in the coastal region of China, including Zhitouyang Bay, Sanmen Bay, Qiangtang River, Dalian Bay, Jiaozhou Bay and Qiongzhou Strait. He is also an adjunct professor in Zhejiang University, Dalian Ocean University, Hehai University and Shanghai Jiaotong University.

Affiliations and Expertise

State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, China

Ju Lin

Ju Lin is an associate professor of Ocean University of China. His research interests are focused on the characteristics of underwater acoustic propagation, the development of underwater acoustic monitoring system and acoustical oceanography. In the last decade, the newly proposed methods succeeded to invert the coastal sea environment parameters such as tidal current and temperature in the Kanmon Strait, Hiroshima Bay, Luzon Strait and Jiaozhou Bay from coastal acoustic tomography data. He serves as an executive council member of the Acoustic Society of Shandong, China, and a member of the Physical Acoustics Branch Committee of Acoustical Society of China and the Underwater Acoustics Branch Committee of Acoustical Society of China.

Affiliations and Expertise

College of Information Science & Engineering, Ocean University of China, Qingtao, China

Ratings and Reviews