Classification Techniques for Medical Image Analysis and Computer Aided Diagnosis - 1st Edition - ISBN: 9780128180044, 9780128180051

Classification Techniques for Medical Image Analysis and Computer Aided Diagnosis

1st Edition

0.0 star rating Write a review
Authors: Nilanjan Dey
Paperback ISBN: 9780128180044
eBook ISBN: 9780128180051
Imprint: Academic Press
Published Date: 31st July 2019
Page Count: 218
Sales tax will be calculated at check-out Price includes VAT/GST
209.94
178.45
131.00
111.35
150.00
127.50
115.00
97.75
Unavailable
Price includes VAT/GST

Institutional Subscription

Secure Checkout

Personal information is secured with SSL technology.

Free Shipping

Free global shipping
No minimum order.

Table of Contents

1. Classıfıcatıon of Unhealthy and Healthy Neonates in Neonatal Intensıve Care Unıts Usıng Medıcal Thermography Processıng and Artıfıcıal Neural Network
2. Use of Health-related Indices and Cassification Methods in Medical Data
3. Image Analysis for Diagnosis and Early Detection of Hepatoprotective Activity
4. Characterization of Stuttering Dysfluencies using Distinctive Prosodic and Source Features
5. A Deep Learning Approach for Patch-based Disease Diagnosis from Microscopic Images
6. A Breast Tissue Characterization Framework Using PCA and Weighted Score Fusion of Neural Network Classifiers
7. Automated Arrhythmia Classification for Monitoring Cardiac Patients Using Machine Learning Techniques
8. IoT-based Fluid and Heartbeat Monitoring For Advanced Healthcare


Description

Classification Techniques for Medical Image Analysis and Computer Aided Diagnosis covers the most current advances on how to apply classification techniques to a wide variety of clinical applications that are appropriate for researchers and biomedical engineers in the areas of machine learning, deep learning, data analysis, data management and computer-aided diagnosis (CAD) systems design. The book covers several complex image classification problems using pattern recognition methods, including Artificial Neural Networks (ANN), Support Vector Machines (SVM), Bayesian Networks (BN) and deep learning. Further, numerous data mining techniques are discussed, as they have proven to be good classifiers for medical images.

Key Features

  • Examines the methodology of classification of medical images that covers the taxonomy of both supervised and unsupervised models, algorithms, applications and challenges
  • Discusses recent advances in Artificial Neural Networks, machine learning, and deep learning in clinical applications
  • Introduces several techniques for medical image processing and analysis for CAD systems design

Readership

Biomedical engineers and researchers in data analytics, soft computing, deep learning, and computer-aided diagnosis systems


Details

No. of pages:
218
Language:
English
Copyright:
© Academic Press 2019
Published:
31st July 2019
Imprint:
Academic Press
Paperback ISBN:
9780128180044
eBook ISBN:
9780128180051

Ratings and Reviews


About the Authors

Nilanjan Dey Author

Nilanjan Dey is an Assistant Professor in the Department of Information Technology at Techno India College of Technology, Kolkata, India. He is a visiting fellow of the University of Reading, UK, and is also a Visiting Professor at Wenzhou Medical University, China and Duy Tan University, Vietnam. He was an honorary Visiting Scientist at Global Biomedical Technologies Inc., CA, USA (2012-2015). He was awarded his PhD. from Jadavpur University in 2015.   Dr. Dey has authored/edited more than 45 books with Elsevier, Wiley, CRC Press, and Springer, and published more than 300 papers. He is the Editor-in-Chief of International Journal of Ambient Computing and Intelligence, IGI Global, Associated Editor of IEEE Access and International Journal of Information Technology published by Springer. He is the Series Co-Editor of Springer Tracts in Nature-Inspired Computing, Springer Nature, Series Co-Editor of Advances in Ubiquitous Sensing Applications for Healthcare, Elsevier, Series Editor of Computational Intelligence in Engineering Problem Solving and Intelligent Signal processing and data analysis, CRC.   His main research interests include medical imaging, machine learning, computer-aided diagnosis and data mining. He is the Indian Ambassador of International Federation for Information Processing (IFIP) – Young ICT Group and has recently been awarded as one among the top 10 most published academics in the field of Computer Science in India (2015-17). 

Affiliations and Expertise

Department of Information Technology, Techno India College of Technology, West Bengal, India