COVID-19 Update: We are currently shipping orders daily. However, due to transit disruptions in some geographies, deliveries may be delayed. To provide all customers with timely access to content, we are offering 50% off Science and Technology Print & eBook bundle options. Terms & conditions.
Cavity Polaritons - 1st Edition - ISBN: 9780125330329, 9780080481371

Cavity Polaritons, Volume 32

1st Edition

Authors: Alexey Kavokin Guillaume Malpuech
eBook ISBN: 9780080481371
Imprint: Academic Press
Published Date: 26th November 2003
Page Count: 246
Sales tax will be calculated at check-out Price includes VAT/GST
Price includes VAT/GST

Institutional Subscription

Secure Checkout

Personal information is secured with SSL technology.

Free Shipping

Free global shipping
No minimum order.

Table of Contents

Preface Introduction
Chapter 0: Frequently asked questions. Part 1: Linear properties of microcavities Chapter 1: Dispersion of cavity polaritons; Reflection and transmission of light by quantum wells containing excitons; Reflectivity of Bragg mirrors; Dispersion of exciton-polaritons in microcavities containing a single quantum well. Chapter 2: Examples of microcavity systems; Multiple quantum wells in a cavity; Coupled microcavities; Bulk microcavities; Regular gratings of quantum wires and quantum dots in a microcavity; Magnetic field effect. Kerr and Faraday rotation. Chapter 3. Disorder effect on cavity polaritons; Reflection and elastic scattering of light by localised excitons; Motional narrowing of cavity polaritons; Photoluminescence and resonant Rayleigh scattering from microcavities (linear regime); Time-resolved reflection of light from quantum wells and microcavities. Part 2: Non-linear optical properties of microcavities. Chapter 4: Photoluminescence of strongly coupled microcavities; Qualitative feature; First PL experiments performed on microcavities; Relaxation of cavity polaritons: qualitative features; Semi-classical treatment of the relaxation kinetics of cavity polaritons; The semi-classical Boltzmann equation; Polariton-structural disorder interaction; Polariton decay; Polariton-phonon interaction; Polariton electron interaction; Polariton-polariton interaction; Numerical solution of Boltzmann equations, practical aspects; Relaxation kinetics of cavity polariton; Quantitative analysis of polariton relaxation kinetics; Presentation of recent PL results, comparison with theory. Chapter 5: Resonant excitation case and parametric amplification; Experimental aspects; Early stage; The Savvidis-Baumberg breakthrough. Experimental details; The cw excitation case; Dressing of the polariton dispersion induced by stimulated scattering; Spin selection rules; A few other experimental results; Theoretical approach: Semi-classical model; The Boltzmann equation; Stationary solution and threshold; Theoretical approach: quantum model; Diagonalisation of the exciton-photon Hamiltonian; Polariton-polariton interaction; Equation of motion for the operators; Three-level model; Analytical solution of the three-level model in the case of cw pumping: The parametric oscillation model; Coherence evolution and symmetry breaking; Dressing of the dispersion induced by polariton condensates. Chapter 6: Toward polariton Bose condensation and polariton lasers; Eighty years of research on BEC; Einstein proposal; Experimental realization; "Modern Definition" of Bose Einstein Condensation; Exciton and polariton specifics; Thermodynamic properties of cavity polariton systems; Interacting bosons and Bogoliubov model; Polariton superfluidity and Kosterlitz-Thouless phase transition; Quasi-condensation and local effects; Relaxation kinetics of cavity polaritons: towards polariton lasing; Experimental quest of the polariton laser (1996-2003); Theoretical description of the polariton laser; How to overcome the bottleneck effect? ;Spin Dynamics of Exciton-Polaritons in Microcavities. Appendix


Volume 32 of the series addresses one of the most rapidly developing research fields in physics: microcavities. Microcavities form a base for fabrication of opto-electronic devices of XXI century, in particular polariton lasers based on a new physical principle with respect to conventional lasers proposed by Einstein in 1917. This book overviews a theory of all major phenomena linked microcavities and exciton-polaritons and is oriented to the reader having no background in solid state theory as well as to the advanced readers interested in theory of exciton-polaritons in microcavities. All major experimental discoveries in the field are addressed as well.

Key Features

· The book is oriented to a general reader and is easy to read for a non-specialist. · Contains an overview of the most essential effects in physics of microcavities experimentally observed and theoretically predicted during the recent decade such as:. · Bose-Einstein condensation at room temperature. · Lasers without inversion of population. · Microcavity boom: optics of the XXI century! · Frequently asked questions on microcavities and responses without formulas. · Half-light-half-matter quasi-particles: base for the future optoelectronic devices


Researchers working in laboratories and industries working on opto-electronic devices, students studying the physics of semiconductors and opto-electronics.


No. of pages:
© Academic Press 2003
26th November 2003
Academic Press
eBook ISBN:

Ratings and Reviews

About the Authors

Alexey Kavokin

Guillaume Malpuech