Biological Complexity and the Dynamics of Life Processes, Volume 34

1st Edition

Editors: J. Ricard
Hardcover ISBN: 9780444500816
eBook ISBN: 9780080860954
Imprint: Elsevier Science
Published Date: 1st November 1999
Page Count: 355
215.00 + applicable tax
23300.00 + applicable tax
130.00 + applicable tax
165.00 + applicable tax
205.00 + applicable tax
Unavailable
Compatible Not compatible
VitalSource PC, Mac, iPhone & iPad Amazon Kindle eReader
ePub & PDF Apple & PC desktop. Mobile devices (Apple & Android) Amazon Kindle eReader
Mobi Amazon Kindle eReader Anything else

Institutional Access


Table of Contents

Preface. Chapter 1. Complexity and the structure of the living cell. 1.1. What do we mean by complexity?. 1.2. The living cell. 1.3. The living cell is a complex system. Chapter 2. Elementary life processes viewed as dynamic physicochemical events. 2.1. General phenomenological description of dynamic processes. 2.2. Enzyme reactions under simple standard conditions. 2.3. Does the complexity of the living cell affect the dynamics of enzyme-catalysed reactions? Chapter 3. Coupling between chemical and (or) vectorial processes as a basis for signal perception and transduction. 3.1. Coupling between reagent diffusion and bound enzyme reaction rate as an elementary sensing device. 3.2. Sensitivity amplification for coupled biochemical systems. 3.3. Bacterial chemotaxis as an example of cell signaling. 3.4. General features of a signaling process. Chapter 4. Control of metabolic networks under steady state conditions. 4.1. Metabolic control theory. 4.2. Biochemical systems theory. 4.3. An example of the application of Metabolic control theory to a biological problem. Chapter 5. Compartmentalization of the living cell and thermodynamics of energy conversion. 5.1. Thermodynamic properties of compartmentalized systems. 5.2. Brief description of molecular events involved in energy coupling. 5.3. Compartmentalization of the living cell and the kinetics and thermodynamics of coupled scalar and vectorial processes. Chapter 6. Molecular crowding, transfer of information and channeling of molecules within supramolecular edifices. 6.1. Molecular crowding. 6.2. Statistical mechanics of ligand binding to supramolecular edifices. 6.3. Statistical mechanics and catalysis within supramolecular edificis. 6.4. Statistical mechanics of imprinting effects. 6.5. Statistical mechanics of instruction transfer within supramolecular edifices. 6.6. Instruction, chaperones and prion proteins. 6.7. Multienzyme complexes, instruction and energy transfer. 6.8. Proteins at the lipid-water interface

Description

The aim of this book is to show how supramolecular complexity of cell organization can dramatically alter the functions of individual macromolecules within a cell. The emergence of new functions which appear as a consequence of supramolecular complexity, is explained in terms of physical chemistry.
The book is interdisciplinary, at the border between cell biochemistry, physics and physical chemistry. This interdisciplinarity does not result in the use of physical techniques but from the use of physical concepts to study biological problems.
In the domain of complexity studies, most works are purely theoretical or based on computer simulation. The present book is partly theoretical, partly experimental and theory is always based on experimental results. Moreover, the book encompasses in a unified manner the dynamic aspects of many different biological fields ranging from dynamics to pattern emergence in a young embryo.
The volume puts emphasis on dynamic physical studies of biological events. It also develops, in a unified perspective, this new interdisciplinary approach of various important problems of cell biology and chemistry, ranging from enzyme dynamics to pattern formation during embryo development, thus paving the way to what may become a central issue of future biology.


Details

No. of pages:
355
Language:
English
Copyright:
© Elsevier Science 1999
Published:
Imprint:
Elsevier Science
eBook ISBN:
9780080860954
Hardcover ISBN:
9780444500816

About the Editors

J. Ricard Editor

Affiliations and Expertise

Université Paris, Institut Jacques MONOD, France