Advances in Research and Development - 1st Edition - ISBN: 9780125330237, 9780080542904

Advances in Research and Development, Volume 23

1st Edition

Modeling of Film Deposition for Microelectronic Applications

Serial Editors: Maurice Francombe John Vossen
eBook ISBN: 9780080542904
Hardcover ISBN: 9780125330237
Imprint: Academic Press
Published Date: 29th September 1997
Page Count: 311
Tax/VAT will be calculated at check-out Price includes VAT (GST)
30% off
30% off
30% off
30% off
30% off
20% off
20% off
30% off
30% off
30% off
30% off
30% off
20% off
20% off
30% off
30% off
30% off
30% off
30% off
20% off
20% off
170.00
119.00
119.00
119.00
119.00
119.00
136.00
136.00
135.00
94.50
94.50
94.50
94.50
94.50
108.00
108.00
225.00
157.50
157.50
157.50
157.50
157.50
180.00
180.00
Unavailable
Price includes VAT (GST)
DRM-Free

Easy - Download and start reading immediately. There’s no activation process to access eBooks; all eBooks are fully searchable, and enabled for copying, pasting, and printing.

Flexible - Read on multiple operating systems and devices. Easily read eBooks on smart phones, computers, or any eBook readers, including Kindle.

Open - Buy once, receive and download all available eBook formats, including PDF, EPUB, and Mobi (for Kindle).

Institutional Access

Secure Checkout

Personal information is secured with SSL technology.

Free Shipping

Free global shipping
No minimum order.

Table of Contents

D.W. Greve, GexSi1-x Eptaxial Layer Growth and Application Integrated Circuits: Introduction. GexSi1-x Heterojunctions- General Considerations. Growth by Molecular Beam Epitaxy: MBE Systems. Surface Cleaning and Preparation. Germanium Incorporation and Abruptness. p-type Doping. n-type Doping. Incororation of Adatoms and Growth Temperature Limits. Gas Sources. Growth by Chemical Vapor Deposition: Low-Temperature Growth. Growth Systems. Surface Reactions. Kinetics ofLayer Growth- Hybride Reactants. Kinetics of Layer Growth- Dichlorosilane. Transition Abruptness. Minimum Growth Temperature. Surface Preperation. Overview/Summary. Application to Heterojunction Bipolar Transistors: Operation of HBT. Early Reports of HBTs. MBE-Grown HBT Process. UHV/CVD-Grown HBT Process. Profile Design for the UHV/CVD HBT. HBT Future Prospects. The GexSi1-x Channel MOSFET. Conclusions and Future Prospects. Acknowledgments. References. P.W. Pellegrini and J.R. Jimenez, Thin-FilmEpitaxial Layers for the Detection of Infrared Signals: Introduction. Infrared Bands, Detectors, and Materials: Infrared Spectral Bands. Detectors of Infrared Radiation. Material Considerations for LWIR Detection. Summary of PT/SI Detector Basics. Group-IV Epitaxial Devices for Infrared Detectors: Delta-Doped PT/SI Detectors. SI-Homojunction Detectors. Si/Ge/Si Heterojunction Internal Photoemission (HIP) Detectors. Silicide/SiGe Schottky Detectors. Detectors Involving Epitaxial Silicides. Growth and Fabrication of Si-Based Infrared Detector Structures: Doping and Temperature. Surface Preparation and Cleaning. Uniformity. Silicide/SiGe Fabrication. Conclusions. References. F.D. Shepherd, Platinum Silicide Internal Emission Ifrared Imaging Arrays: Introduction: Staring-Mode Operation. Requirements Imposed by Thermal Infrared Signals. Early Efforts Leading to Current PtSi IR Camera Technology. The Internal Emission Process: Internal Photemission. Thermionic Emission (Dark Current). Internal Field Emission. State of the Art Platinum Silicide Detectors and Arrays: PtSi Spectral Response. Fowler Emission Efficiency. Array Response Uniformity. Excess Low-Frequency Noise. Array Parameters. Infrared Cameras. Future of PtSi Detector and Sensor Development: Array Size. Pixel Dimensions. Optical Absorption in the Silicide Electrode. Detector Fill Factors. Industrial vs. Military Sensor Requirements. Improvement of Emission Efficiency. Extension of Cut-Off Wavelength. General Observations. Summary. E.R. Brown and K.A. McIntosh, III-V Quantum-Well Structures for High-Speed Electronics: Introduction to Quantum-Well Intersubband Detectors: Direct Detection. Heterodyne Detection. Quantum-Well Detector Design and Intersubband Absorption: Quantum-Well Energy Levels. Epitaxial Growth. Intersubband Absorption Measurement Techniques. Intersubband Absorption Results. MQW Detector Fabrication and DC Response Characteristics: Fabrication and Packaging. Dark Current. Spectral and Absolute Responsivity.Photoconductive Gain. External Quantum Efficiency. Electrical Bandwidth and Optical-Heterodyne Experiments: Photoelectron Generations- Recombination Noise Technique. Diode-Laser Mixing Technique. Microwave Rectification Technique. Discussion of Bandwidthand Lifetime. Heterodyne Sensitivity Technique. Heterodyne Sensitivity Results. Applications: Instrumental Resolution and Sensitivity. High-Resolution Molecular Spectroscopy. Long-Range, High-Data-Rate Communications. Improvements in MAW Heterodyne Detectors: Enhancement of External Quantum Efficiency. Design of Detectors Having Lifetime-Limited Electrical Bandwidth. A.G.U. Perera, J-W. Choe, and M.H. Francombe, Quantum-Well Devices for Infrared Emission: Introduction and Background. Quantum-Wells in Interband-Type IR Sources: Role of Size ad Strain Effects- General. MQW Heterostructures for Mid-Wave IR- Examples. Intersubband Transition Processes for IR Emission: Background and Summary. Radiative Transitions and Population Inversion. FIR Emission from MQW Structures. Quantum Efficiency of the Cascade Process. Photon Wave Function in the Superlattice. Early LWIR Emission Results. Graded Gap Injection Structures for MWIR and LWIR Emission: First 5 um Intersubband IR Emission. Development of Quantum Cascade Laser. Recent Trends, Limitations, and Application Potential. Appendix: Sequential Resonant Tunneling. Physics of Resonant Tunneling. Energy and Lifetime from Complex Energy Method. Author Index. Subject Index.


Description

Significant progress has occurred during the last few years in device technologies and these are surveyed in this new volume. Included are Si/(Si-Ge) heterojunctions for high-speed integrated circuits, Schottky-barrier arrays in Si and Si-Ge alloys for infrared imaging, III-V quantum-well detector structures operated in the heterodyne mode for high-data-rate communications, and III-V heterostructures and quantum-wells for infrared emissions.

Readership

Researchers in thin films, materials science, condensed matter physics, AVS, microelectronics, and computer simulation in this field.


Details

No. of pages:
311
Language:
English
Copyright:
© Academic Press 1997
Published:
Imprint:
Academic Press
eBook ISBN:
9780080542904
Hardcover ISBN:
9780125330237

About the Serial Editors

Maurice Francombe Serial Editor

Affiliations and Expertise

Georgia State University, Atlanta, U.S.A.

John Vossen Serial Editor

Affiliations and Expertise

RCA Laboratories, Princeton, New Jersey