Description

Powder metallurgy (PM) is a popular metal forming technology used to produce dense and precision components. Different powder and component forming routes can be used to create an end product with specific properties for a particular application or industry. Advances in powder metallurgy explores a range of materials and techniques used for powder metallurgy and the use of this technology across a variety of application areas.

Part one discusses the forming and shaping of metal powders and includes chapters on atomisation techniques, electrolysis and plasma synthesis of metallic nanopowders. Part two goes on to highlight specific materials and their properties including advanced powdered steel alloys, porous metals and titanium alloys. Part three reviews the manufacture and densification of PM components and explores joining techniques, process optimisation in powder component manufacturing and non-destructive evaluation of PM parts. Finally, part four focusses on the applications of PM in the automotive industry and the use of PM in the production of cutting tools and biomaterials.

Advances in powder metallurgy is a standard reference for structural engineers and component manufacturers in the metal forming industry, professionals working in industries that use PM components and academics with a research interest in the field.

Key Features

  • Discusses the forming and shaping of metal powders and includes chapters on atomisation techniques
  • Highlights specific materials and their properties including advanced powdered steel alloys, porous metals and titanium alloys
  • Reviews the manufacture and densification of PM components and explores joining techniques

Readership

Postgraduate students in materials science, metallurgy, process engineering courses; Those in the diamond tool, aerospace, chemical processing, automotive, additive layer manufacturing industries

Table of Contents

Contributor contact details

Woodhead Publishing Series in Metals and Surface Engineering

Part I: Forming and shaping of metal powders

Chapter 1: Advances in atomisation techniques for the formation of metal powders

Abstract:

1.1 Introduction

1.2 Atomisation techniques

1.3 Problems and advances in gas atomisation

1.4 Problems and advances in water atomisation

1.5 Centrifugal atomisation

1.5.2 Other non-ferrous powders

1.6 Other atomisation techniques

1.7 Conclusion

Chapter 2: Forming metal powders by electrolysis

Abstract:

2.1 Background of electrometallurgy and powder metallurgy

2.2 Principle and main technological prospects for the FFC Cambridge process

2.3 Production of metal powders by the FFC Cambridge process

2.4 Direct route from oxide precursors to alloyed powders

2.5 Conclusions and future trends

2.6 Acknowledgement

Chapter 3: Mechanochemical synthesis of nanocrystalline metal powders

Abstract:

3.1 Introduction

3.2 Mechanochemical processing

3.3 The process

3.4 Grain size and process variables

3.5 Displacement reactions

3.6 Consolidation

3.7 Powder contamination

3.8 Conclusions

Chapter 4: Plasma synthesis of metal nanopowders

Abstract:

4.1 Introduction

4.2 Potential benefits and applications of metal nanopowders

4.3 Electrical arc discharge synthesis of metal nanopowders

4.4 Conclusions

Chapter 5: Warm compaction of metallic powders

Abstract:

5.1 Introduction

5.2 Warm compaction process

5.3 Properties of warm compacted parts

5.4 Materials and applications

5.5 Future trends and concluding remarks

Chapter 6: Developments in metal injection moulding (MIM)

Abstract:

6.1 Introduction to metal inje

Details

No. of pages:
624
Language:
English
Copyright:
© 2013
Published:
Imprint:
Woodhead Publishing
Print ISBN:
9780857094209
Electronic ISBN:
9780857098900

About the editors

Isaac Chang

Dr Isaac Chang is Head of Education at the School of Metallurgy and Materials, University of Birmingham, UK.

Yuyuan Zhao

Dr Yuyuan Zhao is Reader in Materials Engineering at the School of Engineering, University of Liverpool, UK.