COVID-19 Update: We are currently shipping orders daily. However, due to transit disruptions in some geographies, deliveries may be delayed. To provide all customers with timely access to content, we are offering 50% off Science and Technology Print & eBook bundle options. Terms & conditions.
Advances in Physical Organic Chemistry - 1st Edition - ISBN: 9780128047163, 9780128050811

Advances in Physical Organic Chemistry, Volume 50

1st Edition

Serial Editors: Ian Williams Nick Williams
Hardcover ISBN: 9780128047163
eBook ISBN: 9780128050811
Imprint: Academic Press
Published Date: 26th October 2016
Page Count: 292
Sales tax will be calculated at check-out Price includes VAT/GST
Price includes VAT/GST

Institutional Subscription

Secure Checkout

Personal information is secured with SSL technology.

Free Shipping

Free global shipping
No minimum order.

Table of Contents

  • Advisory Board
  • <li>Preface</li> <li>Chapter One. Equilibrium Effective Molarity As a Key Concept in Ring-Chain Equilibria, Dynamic Combinatorial Chemistry, Cooperativity&#xA0;and Self-assembly<ul><li>1. Introduction</li><li>2. Effective Molarity</li><li>3. Equilibrium Macrocylizations</li><li>4. Dynamic Combinatorial Chemistry</li><li>5. Cooperativity and Self-Assembly</li><li>6. Conclusion</li></ul></li> <li>Chapter Two. Thermodynamic Effective Molarities for Supramolecular Complexes<ul><li>1. Introduction</li><li>2. Effective Molarities for Supramolecular Complexes</li><li>3. Conclusion</li><li>Appendix: Collection of Thermodynamic Effective Molarity Values for Supramolecular Complexes</li></ul></li> <li>Chapter Three. Reactivity of Nucleic Acid Radicals<ul><li>1. Introduction</li><li>2. Radical Formation in Nucleic Acids</li><li>3. The Norrish Type I Photoreaction</li><li>4. C1&#x2032;-Radical Generation, Reactivity&#xA0;and Related Mechanistic Implications</li><li>5. C2&#x2032;-Radical Generation and Reactivity in DNA, Ribonucleosides&#xA0;and RNA</li><li>6. C3&#x2032;-Radical Generation and Reactivity in DNA</li><li>7. C4&#x2032;-Radical Generation and Reactivity in DNA and RNA</li><li>8. C5&#x2032;-Radical Generation and Reactivity in DNA</li><li>9. Nucleobase Radical Generation and Reactivity in DNA and RNA</li><li>10. Summary and Future Considerations</li></ul></li> <li>Chapter Four. Computational Studies of Environmental Effects and Their Interplay With Experiment<ul><li>1. Introduction</li><li>2. Computational Models</li><li>3. The Interplay With Experiments: The Solvated Molecule and Its Spectroscopic Responses</li><li>4. Beyond the Solvated Molecule</li><li>5. Conclusions</li></ul></li> <li>Subject Index</li> <li>Author Index</li> <li>Cumulative Index of Titles</li> <li>Cumulative Index of Authors</li>


Advances in Physical Organic Chemistry series is the definitive resource for authoritative reviews of work in physical organic chemistry. It aims to provide a valuable source of information not only for physical organic chemists applying their expertise to both novel and traditional problems, but also for non-specialists across diverse areas who identify a physical organic component in their approach to research. Its hallmark is a quantitative, molecular level understanding of phenomena across a diverse range of disciplines.

Key Features

  • Reviews the application of quantitative and mathematical methods to help readers understand chemical problems
  • Provides the chemical community with authoritative and critical assessments of the many aspects of physical organic chemistry
  • Covers organic, organometallic, bioorganic, enzymes, and materials topics
  • Presents the only regularly published resource for reviews in physical organic chemistry
  • Written by authoritative experts who cover a wide range of topics that require a quantitative, molecular-level understanding of phenomena across a diverse range of disciplines


Researchers at all levels and in all sectors who need access to definitive reviews of topics requiring a quantitative, molecular-level understanding of chemical phenomena


No. of pages:
© Academic Press 2016
26th October 2016
Academic Press
Hardcover ISBN:
eBook ISBN:

Ratings and Reviews

About the Serial Editors

Ian Williams

Ian Williams

Ian Williams has been Professor of Theoretical Organic Chemistry at the University of Bath since 1995. He has many years’ experience in the application of computational methods to the study of problems in physical organic chemistry. Born in Bournemouth, England, he studied at the University of Sheffield and gained his PhD under the supervision of James McKenna. He then spent two years in Richard Schowen’s laboratory at the University of Kansas, five years as a Royal Society Pickering Research Fellow at Cambridge in the sub-group of Theoretical Chemistry, and four years as an EPSRC Advanced Fellow in Bristol. Since his first appointment at Bath in 1989, he has taught physical organic and computational chemistry to all years of the Chemistry programmes and is currently a Director of Studies. His research uses computational modelling and simulation as tools to aid the interpretation of experimental observations, and he has published on a broad range of topics from atmospheric chemistry to enzyme mechanisms. A past Chair of the Royal Society of Chemistry Theoretical Chemistry Group and UK representative on the EuCheMS Division of Computational Chemistry, he now serves on the IUPAC Subcommittee on Structural and Mechanistic Chemistry, which has responsibility for the ICPOC international conferences on physical organic chemistry, and he chaired ICPOC21 in the UK. He is no relation to the other Co-Editor of Advances in Physical Organic Chemistry!

Affiliations and Expertise

University of Bath, UK

Nick Williams

Nick Williams

Nick Williams has been Professor of Physical Organic Chemistry at the University of Sheffield since 2011. He has many years experience in experimental studies that are focused on understanding mechanism and reactivity in organic chemistry. He studied for his first degree at the University of Cambridge, where he stayed for his PhD under the supervision of Tony Kirby. After a further short post doctoral period and a position as temporary lector in organic chemistry at Trinity College, Cambridge, he spent two years at McGill University in the laboratory of Jik Chin as a Royal Society/NSERC research fellow. He was appointed to a lectureship in Sheffield in 1996, where he has remained since, and has taught physical organic chemistry at all undergraduate levels and is currently Chair of the Curriculum Committee. His research involves the design, synthesis and analysis of organic and inorganic compounds to dissect and quantify contributions to reactivity and catalysis. This has been particularly focused on biologically relevant reactions and artificial models that functionally mimic natural systems, but has embraced topics as diverse as light induced surface patterning and transmembrane signaling. He has been a past chair of the Royal Society of Chemistry Organic Reaction Mechanisms Committee (renamed the Physical Organic Group at the end of his tenure) and took a particular effort to provide events to nurture the younger physical organic chemistry community. He is not related to the other Co-Editor of Advances in Physical Organic Chemistry!

Affiliations and Expertise

University of Sheffield, UK