Advances in Physical Organic Chemistry

Advances in Physical Organic Chemistry

1st Edition - November 22, 2013

Write a review

  • Editors: Ian Williams, Nick Williams
  • eBook ISBN: 9780124078314
  • Hardcover ISBN: 9780124077546

Purchase options

Purchase options
DRM-free (PDF, Mobi, EPub)
Available
Sales tax will be calculated at check-out

Institutional Subscription

Free Global Shipping
No minimum order

Description

Advances in Physical Organic Chemistry provides the chemical community with authoritative and critical assessments of the many aspects of physical organic chemistry. The field is a rapidly developing one, with results and methodologies finding application from biology to solid-state physics.

Key Features

  • Reviews the application of quantitative and mathematical methods toward understanding chemical problems
  • Covers organic, organometallic, bioorganic, enzymes and materials topics

Readership

For those interested in the relationship between the structure and function of organic compounds and includes physical and theoretical chemists as well as organic and bioorganic chemists

Table of Contents

  • Series Page

    Contributors

    Preface

    Chapter One. Time-Resolved Electron Paramagnetic Resonance Spectroscopy: History, Technique, and Application to Supramolecular and Macromolecular Chemistry

    Abstract

    1 Introduction

    2 Definition of the TREPR Experiment

    3 Experimental Considerations for TREPR

    4 TREPR System Components

    5 Chemically Induced Electron Spin Polarization (CIDEP) Mechanisms

    6 Applications of TREPR

    7 Summary and Outlook

    Acknowledgments

    References

    Chapter Two. Avoiding CO2 in Catalysis of Decarboxylation

    Abstract

    1 Introduction

    2 Enzyme Catalysis

    3 Mechanistic Issues

    4 Lessons from Theory

    5 CO2 - Reactivity and Reverse Reactions

    6 Alternatives to CO2 - Carbonic Acid Derivatives

    7 Reactions Proceeding Through Hydrated Intermediates

    8 Rethinking the Decarboxylation of Trichloroacetic Acid

    9 A Basis for Mechanistic Diversity

    10 The Role of Metal Ions

    11 Conclusions and Prospects

    Acknowledgments

    References

    Chapter Three. Binding and Reactivity at Bilayer Membranes

    Abstract

    1 Introduction

    2 Binding to Membranes

    3 Chemical Reactivity at Membranes

    4 Conclusions

    Acknowledgments

    References

    Subject Index

    Author Index

    Cumulative Index of Titles

    Cumulative Index of Authors

Product details

  • No. of pages: 232
  • Language: English
  • Copyright: © Academic Press 2013
  • Published: November 22, 2013
  • Imprint: Academic Press
  • eBook ISBN: 9780124078314
  • Hardcover ISBN: 9780124077546

About the Serial Editors

Ian Williams

Ian Williams
Ian Williams has been Professor of Theoretical Organic Chemistry at the University of Bath since 1995. He has many years’ experience in the application of computational methods to the study of problems in physical organic chemistry. Born in Bournemouth, England, he studied at the University of Sheffield and gained his PhD under the supervision of James McKenna. He then spent two years in Richard Schowen’s laboratory at the University of Kansas, five years as a Royal Society Pickering Research Fellow at Cambridge in the sub-group of Theoretical Chemistry, and four years as an EPSRC Advanced Fellow in Bristol. Since his first appointment at Bath in 1989, he has taught physical organic and computational chemistry to all years of the Chemistry programmes and is currently a Director of Studies. His research uses computational modelling and simulation as tools to aid the interpretation of experimental observations, and he has published on a broad range of topics from atmospheric chemistry to enzyme mechanisms. A past Chair of the Royal Society of Chemistry Theoretical Chemistry Group and UK representative on the EuCheMS Division of Computational Chemistry, he now serves on the IUPAC Subcommittee on Structural and Mechanistic Chemistry, which has responsibility for the ICPOC international conferences on physical organic chemistry, and he chaired ICPOC21 in the UK. He is no relation to the other Co-Editor of Advances in Physical Organic Chemistry!

Affiliations and Expertise

Professor of Theoretical Organic Chemistry, University of Bath, UK

Nick Williams

Nick Williams
Nick Williams has been Professor of Physical Organic Chemistry at the University of Sheffield since 2011. He has many years experience in experimental studies that are focused on understanding mechanism and reactivity in organic chemistry. He studied for his first degree at the University of Cambridge, where he stayed for his PhD under the supervision of Tony Kirby. After a further short post doctoral period and a position as temporary lector in organic chemistry at Trinity College, Cambridge, he spent two years at McGill University in the laboratory of Jik Chin as a Royal Society/NSERC research fellow. He was appointed to a lectureship in Sheffield in 1996, where he has remained since, and has taught physical organic chemistry at all undergraduate levels and is currently Chair of the Curriculum Committee. His research involves the design, synthesis and analysis of organic and inorganic compounds to dissect and quantify contributions to reactivity and catalysis. This has been particularly focused on biologically relevant reactions and artificial models that functionally mimic natural systems, but has embraced topics as diverse as light induced surface patterning and transmembrane signaling. He has been a past chair of the Royal Society of Chemistry Organic Reaction Mechanisms Committee (renamed the Physical Organic Group at the end of his tenure) and took a particular effort to provide events to nurture the younger physical organic chemistry community. He is not related to the other Co-Editor of Advances in Physical Organic Chemistry!

Affiliations and Expertise

University of Sheffield, UK

Ratings and Reviews

Write a review

There are currently no reviews for "Advances in Physical Organic Chemistry"