This special volume of Advances in Imaging and Electron Physics details the current theory, experiments, and applications of neutron and x-ray optics and microscopy for an international readership across varying backgrounds and disciplines. Edited by Dr. Ted Cremer, these volumes attempt to provide rapid assimilation of the presented topics that include neutron and x-ray scatter, refraction, diffraction, and reflection and their potential application.

Key Features

  • Contributions from leading authorities
  • Informs and updates on all the latest developments in the field


Physicists, electrical engineers and applied mathematicians in all branches of image processing and microscopy as well as electron physics in general

Table of Contents


Edited by




Future Contributions

Chapter 1 Fast and Thermal Neutrons for Radiography and Isotope Detection

1 Inelastic and Elastic Fast Neutron Scatter

2 Moderation of Fast Neutrons to Thermal Neutrons

3 Determination of Neutron Moderator Thickness

4 Inelastic Fast Neutron Scatter—Determination of Scattered Target Nucleus Energy

5 Center of Mass to Lab Frame Transformation of a Differential Cross Section

6 Reduction of Gamma Noise in Moderated Fast Neutron Sources of Thermal Neutrons

7 The DD Fusion Reaction and Generator—DD Neutron Yield

8 DD Fusion Neutron Source—Threshold Deuteron Projectile Energy and Neutron Angular Energy Distribution

9 Nuclear-Resonant Fluorescence (NRF) Detection of Isotopes of Interest in Gamma or Fast-Neutron-Interrogated Targets

10 Nuclear-Resonant Detection of Excited State Gammas Emitted from Targets Interrogated by Fast Neutron Inelastic Scatter

11 Criteria for Nuclear Resonant Absorption of Target Isotope-Emitted Gammas

12 Resonant Detection of Target-Emitted Gammas Depends on Angular Position of Resonant Detector

13 Probability of Nuclear Resonant Detection of Target-Emitted Isotope Gammas Verses Detector Angular Position

14 Range of Angles for Nuclear Resonant Detection of Target-Emitted Gammas

Chapter 2 Neutron Scatter Amplitude, Cross Section, Scatter Length, and Refractive Index

1 Wave and Particle Aspects of Neutrons

2 Coherent and Incoherent, Elastic and Inelastic Neutron Scatter

3 The Eikonal Equation for Neutron Optics

4 The Eikonal Equation for a Stationary Wave Function Yields a Refractive Index

5 Scatter Cross Section Expressed by Neutron Scatter Amplitude

6 The Absorption Cross Section Expressed by the Neutron Probability Density and Probability Current Density via


No. of pages:
© 2012
Academic Press
eBook ISBN:
Print ISBN:

About the serial-volume-editor

Jay Theodore Cremer, Jr.

Affiliations and Expertise

Chief Scientist, Adelphi Technology, Inc.