COVID-19 Update: We are currently shipping orders daily. However, due to transit disruptions in some geographies, deliveries may be delayed. To provide all customers with timely access to content, we are offering 50% off Science and Technology Print & eBook bundle options. Terms & conditions.
A Comprehensive Physically Based Approach to Modeling in Bioengineering and Life Sciences - 1st Edition - ISBN: 9780128125182, 9780128125199

A Comprehensive Physically Based Approach to Modeling in Bioengineering and Life Sciences

1st Edition

Authors: Riccardo Sacco Giovanna Guidoboni Aurelio Giancarlo Mauri
eBook ISBN: 9780128125199
Paperback ISBN: 9780128125182
Imprint: Academic Press
Published Date: 18th July 2019
Page Count: 854
Sales tax will be calculated at check-out Price includes VAT/GST
Price includes VAT/GST

Institutional Subscription

Secure Checkout

Personal information is secured with SSL technology.

Free Shipping

Free global shipping
No minimum order.


A Comprehensive Physically Based Approach to Modeling in Bioengineering and Life Sciences provides a systematic methodology to the formulation of problems in biomedical engineering and the life sciences through the adoption of mathematical models based on physical principles, such as the conservation of mass, electric charge, momentum, and energy. It then teaches how to translate the mathematical formulation into a numerical algorithm that is implementable on a computer. The book employs computational models as synthesized tools for the investigation, quantification, verification, and comparison of different conjectures or scenarios of the behavior of a given compartment of the human body under physiological and pathological conditions.

Key Features

  • Presents theoretical (modeling), biological (experimental), and computational (simulation) perspectives
  • Features examples, exercises, and MATLAB codes for further reader involvement
  • Covers basic and advanced functional and computational techniques throughout the book


Biomedical engineers, life sciences researchers, as well as undergraduate and graduate students in Biomedical Engineering, Electrical Engineering, Mathematics, Biology and Medicine

Table of Contents

Part I. Mathematical, Computational, and Physical Foundations
1. Elements of Mathematical Modeling
2. Elements of Mathematical Methods
3. Elements of computational methods
4. Elements of Physics

Part II. Balance Laws
5. The Rational Continuum Mechanics Approach to Matter in Motion
6. Balance laws in integral form
7. Balance laws in local form
8. Continuum Approach for Multicomponent Mixtures

Part III. Constitutive Relations
9. Preliminary Considerations on Constitutive Modeling
10. Constitutive Relations for Fluids
11. Constitutive Relations for Solids
12. Constitutive Relations for Multicomponent Mixtures
13. Constitutive Relations in Electromagnetism and Ion Electrodynamics

Part IV. Model Reduction of System Complexity
14. Reduction of the Maxwell Partial Differential System
15. Electric Analogy to Fluid Flow

Part V. Mathematical Models of Basic Biological Units and Complex Systems
16. Cellular Components and Functions: A Brief Overview
17. Mathematical Modeling of Cellular Electric Activity
18. Mathematical Modeling of Electric Propagation Along Nerve Fibers
19. Differential Models in Cellular Functions

Part VI. Advanced Mathematical and Computational Methods
20. Functional Spaces and Functional Inequalities
21. Functional Iterations for Nonlinear Coupled Systems of Partial Differential Equations
22. Time Semidiscretization and Weak Formulations for Initial Value/Boundary Value Problems of Advection–Diffusion–Reaction Type
23. Finite Element Approximations of Boundary Value Problems of Advection–Diffusion–Reaction Type
24. Finite Element Approximations of Initial Value/Boundary Value Problems of Advection–Diffusion–Reaction Type
25. Finite Element Approximation of a Unified Model for Linear Elastic Materials

Part VII. Simulation Examples and Clinical Applications
26. Ion Dynamics in Cellular Membranes
27. Interaction Between Hemodynamics and Biomechanics in Ocular Perfusion

Part VIII. Examples, Exercises, and Projects
28. Coding of Examples Using Matlab Scripts
29. Matlab Functions for Algorithm Implementation
30. Homework: Exercises and Projects

Appendix A. Elements of Differential Geometry and Balance Laws in Curvilinear Coordinates


No. of pages:
© Academic Press 2019
18th July 2019
Academic Press
eBook ISBN:
Paperback ISBN:

About the Authors

Riccardo Sacco

Riccardo Sacco, PhD, is an applied mathematician whose research and teaching activities span a wide variety of topics, including computational biology, semiconductor device modeling and simulation, computational fluid mechanics, and finite element analysis. Dr. Sacco has been appointed as a member of the Editorial Board of the “Journal of Coupled Systems and Multiscale Dynamics” and of the “Journal of Modeling for Ophthalmology.” In a joint partnership with Prof. Guidoboni and Prof. Harris, Dr. Sacco has promoted a series of international workshops, congresses, and doctoral courses with the twofold purpose of disseminating the use of mathematical and numerical methods in the study and clinical treatment of ophthalmological diseases and of fostering and favoring the interaction among students, scientists, and researchers in the fields of applied sciences and life sciences.

Affiliations and Expertise

Associate Professor, Department of Mathematics, Politecnico di Milano, Italy

Giovanna Guidoboni

Giovanna Guidoboni, PhD, is an applied mathematician with expertise in mathematical and computational modeling of complex fluid flows arising in engineering and biomedical applications. Dr. Guidoboni has promoted the development of interdisciplinary approaches in physiology and ophthalmology at the international level. She co-founded a new peer-reviewed scientific journal titled “Journal for Modeling in Ophthalmology,” for which she currently serves as co-Chief Editor and Managing Editor, and a new series of interdisciplinary congresses and doctoral courses creating a forum where ophthalmologists, physiologists, mathematicians, engineers, physicists, and biologists can discuss new ideas on how to address outstanding challenges in ophthalmology.

Affiliations and Expertise

Professor of Electrical Engineering and Computer Science, University of Missouri, Professor of Mathematics, University of Missouri, Adjunct Professor of Mathematical Sciences, Indiana University Purdue University Indianapolis, Adjunct Professor of Ophthalmology, Indiana University School of Medicine

Aurelio Giancarlo Mauri

Aurelio Giancarlo Mauri, MSc, is a Senior Member of the Technical Staff of Micron Technology, where he currently works in the numerical simulation group appointed for the physical modeling of electronic devices. He is the main author of FEMOS-MP (Finite Element Method Oriented Simulator for Multiphysics Problems), a C++ platform for the simulation of complex multiphysics systems including thermomechanical effects, chemical reactions and kinetics, semiconductors, and nonconventional materials in the continuum framework and using atomistic kinetic Monte Carlo methods. Currently, he also holds a lecturer fellowship at Politecnico di Milano for the courses “Numerical Analysis” and “Computational Modeling for Electronics and Biomathematics.”

Affiliations and Expertise

Lecturer, Politecnico di Milano, Italy


"When this reviewer opted to receive and review this text, it was hoped that it would present as a complementary text to those of Drs. Carson and Cobelli [Modelling Methodology for Physiology and Medicine (2013) and Introduction to Modeling in Physiology and Medicine, 2nd ed. (2019)]. This was not to be the case. While this text is touted as being for “Biomedical engineers, life sciences researchers, as well as undergraduate and graduate students in Biomedical Engineering, Electrical Engineering, Mathematics, Biology, and Medicine” (Academic Press website), this reviewer suggests that the text be mainly considered as a reference text, to be used primarily by those with an adequate mathematical and MATLAB background." --IEEE

Ratings and Reviews