Radiometric Temperature Measurements

I. Fundamentals

Edited by

  • Zhuomin Zhang, George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
  • Benjamin Tsai, NIST, Gaithersburg, MD, USA
  • Graham Machin, Division of Industry and Innovation, National Physical Laboratory, Teddington, Middlesex, UK

This book describes the theory of radiation thermometry, both at a primary level and for a variety of applications, such as in the materials processing industries and remote sensing. This book is written for those who will apply radiation thermometry in industrial practice; use radiation thermometers for scientific research; the radiation thermometry specialist in a national measurement institute; developers of radiation thermometers who are working to innovate products for instrument manufacturers, and developers of non-contact thermometry methods to address challenging thermometry problems.

The authors of each chapter were chosen from a group of international scientists who are experts in the field and specialists on the subject matter covered in the chapter. A large number of references are included at the end of each chapter as a resource for those seeking a deeper or more detailed understanding.

This book is more than a practice guide, readers will gain in-depth knowledge in:

(1) the proper selection of the type of thermometer;

(2) the best practice in using the radiation thermometers;

(3) awareness of the error sources and subsequent appropriate procedure to reduce the overall uncertainty; and

(4) understanding of the calibration chain and its current limitations.

View full description


Industrial practitioners in radiation thermometers; Scientific reseachers using thermometers; Designers of themometers


Book information

  • Published: October 2009
  • ISBN: 978-0-12-374021-2


"This reviewer was impressed by the scope and depth of coverage afforded to this rapidly developing and very important class of measurement techniques. Non-contact temperature measurement has many applications, as it avoids contamination of the measured material, can handle extremely high temperatures, and can usually (but not always) be a nonintrusive measurement method. Many of the pitfalls common in application of radiation thermometry are pointed out in these volumes, and methods for avoiding the common errors in application are given. These volumes should be a part of the library of anyone using radiation thermometry in engineering applications."--International Journal of Thermophysics

Table of Contents


Glossary (Nomenclature)

1. Overview of Radiation Thermometry (Z.M. Zhang and G. Machin)

2. Temperature Fundamentals (G. Machin and B.K. Tsai)

3. Theory of Thermal Radiation and Radiative Properties (Z.M. Zhang and B.J. Lee)

4. Radiation Thermometer Designs (H.W. Yoon and G.P. Eppeldauer)

5. Calculation of Radiation Characteristics of Blackbody Radiation Sources (A.V. Prokhorov, L.M. Hanssen, and S.N. Mekhontsev)

6. Blackbody and other Calibration Sources (J. Hartmann, J. Hollandt, B. Khlevnoy, S. Morozova, S. Ogarev, and F. Sakuma)

7. Laser Optical and Photothermal Thermometry of Solids and Thin Films (Y. Liu and A. Mandelis)

Appendix A. Fundamental and Other Physical Constants