### Table of Contents

Chapter 1. Basic Properties of Crystals; 1.1 Crystal Lattices; 1.2 Bravais Lattices in Two- and Three- Dimensions; 1.3 Lattice Planes and Miller Indices; 1.4 Bravais Lattices and Crystal Structures; 1.5 Crystal Defects and Surface Effects; 1.6 Some Simple Crystal Structures; 1.7 Bragg Diffraction; 1.8 Laue Method; 1.9 Reciprocal Lattice; 1.10 Brillouin Zone; 1.11 Diffraction By a Crystal Lattice With a Basis; Problems; References; Chapter 2. Phonons and Lattice Vibrations; 2.1 Lattice Dynamics; 2.2 Lattice Specific heat; 2.3 Second Quantization; 2.4 Quantization of Lattice waves; Problems; References; Chapter 3. Free Electron Model; 3.1 The Classical (Drude) Model of a Metal; 3.2nbsp; Sommerfeld Model; 3.3nbsp; Fermi Energy and the chemical potential.; 3.4nbsp; Specific heat of the electron gas; 3.5nbsp; DC electrical conductivity; 3.6nbsp; The Hall effect; 3.7nbsp; Failures of the Free Electron Model; Problems; References; Chapter 4. Nearly Free Electron Model; 4.1 Electrons in a Weak Periodic Potential; 4.2 Bloch Functions and Bloch Theorem; 4.3 Reduced, Extended and Repeated Zone Schemes; 4.4 Band Index; 4.5 Effective Hamiltonian; 4.6 Proof of Bloch Theorem From Translational Symmetry; 4.7 Approximate Solution Near a Zone Boundary; 4.8 Different Zone Schemes; 4.9 Elementary Band Theory of Solids; 4.10 Metals, Insulators and Semiconductors; 4.11 Brillouin Zones; 4.12 Fermi Surface; Problems; References; Chapter 5. Band Structure Calculations; 5.1. Introduction; 5.2. Tight-Binding Approximation; 5.3. LCAO Method; 5.4. Wannier Functions; 5.5. Cellular Method; 5.6. Orthogonalized Plane Wave (OPW) Method; 5.7. Pseudopotentials; 5.8. Muffin-Tin Potential; 5.9. Augmented Plane Wave (APW) Method; 5.10. Greenâ€™s Function Method; 5.11. Model Pseudoptentials; 5.12. Empirical Pseudopotentials; 5.13. First-Principle Pseudopotentials; Problems; References; Chapter 6. Static and Transport Properties of Solids; 6.1. Band Picture; 6.2. Bond Picture; 6.3. Diamond Structure; 6.4. Si and Ge; 6.5. Zinc-Blende Semiconductors; 6.6. Ionic Solids; 6.7. Molecular Crystals; 6.8. Cohesion of Solids; 6.9. The Semiclassical model; 6.10. Lioiuvilleâ€™s Theorem; 6.11. Boltzmann Equation; 6.12. Relaxation Time Approximation; 6.13. Electrical Conductivity; 6.14. Thermal Conductivity; 6.15. Weak Scattering Theory of Conductivity; 6.16. Resistivity Due to Scattering by Phonons; Problems; References; Chapter 7. Electron-Electron Interaction; 7.1. Introduction; 7.2. Hartree Approximation; 7.3. Hartree-Fock Approximation; 7.4. Effect of Screening; 7.5. Friedel Sum Rule and Oscillations; 7.6. Frequency and Wave Number Dependent Dielectric Constant; 7.7. Mott Transition; 7.8. Density Functional Theory; 7.9. Fermi Liquid Theory; 7.10. Greenâ€™s Function Method; Problems; References; Chapter 8. Dynamics of Bloch Electrons; 8.1. Semi-classical Model; 8.2. Velocity Operator; 8.3.nbsp;nbsp; Perturbation Theory; 8.4. Quasi-Classical Dynamics; 8.5. Effective Mass; 8.6. Bloch Electrons in External Fields; 8.7. Bloch Oscillations; 8.8. Holes; 8.9. Zener Breakdown; 8.10. Rigorous Calculation of Zener Tunneling; 8.11. Electron-Phonon Interactions; Problems; References; Chapter 9. Semiconductors; 9.1. Introduction; 9.2. Electrons and Holes; 9.3. Electron and Hole Densities in Equilibrium; 9.4. Intrinsic Semiconductors; 9.5. Extrinsic Semiconductors; 9.6. Doped semiconductors; 9.7. Statistics of Impurity Levels in Thermal Equilibrium; 9.8. Diluted Magnetic Semiconductors; 9.9. ZnO; 9.10. Amorphous Semiconductors; Problems; References; Chapter 10. Electronics; 10.1. Introduction; 10.2. p-n Junction; 10.3. Rectification by a p-n Junction; 10.4. Transistors; 10.5. Integral Circuits; 10.6. Optoelectronic Devices; 10.7. Graphene; 10.8. Graphene-Based Electronics; Problems; References; Chapter 11. Spintronics; 11.1. Introduction; 11.2. Magnetoresistance; 11.3. Giant Magnetic Resonance; 11.4. Mottâ€™s Theory of Spin-Dependent Scattering of Electrons; 11.5. Camley-Barnes Model; 11.6. CPP-GMR; 11.7. MTJ, TMR and MRAM; 11.8. Spin Transfer Torques and Magnetic Switching; 11.9. Spintronics with Semiconductors; Problems; References; Chapter 12. Diamagnetism and Paramagnetism; 12.1 Introduction; 12.2 Atomic (or ionic) Magnetic Susceptibilities; 12.3 Magnetic Ssceptibility of Free Electrons in Metals; 12.4 Many-Body Theory of Magnetic Susceptibility of Bloch Electrons in Solids; 12.5 Quantum Hall Effect; 12.6 Fractional Quantum Hall Effect; Problems; References; Chapter 13. Magnetic Ordering; 13.1 Introduction; 13.2 Magnetic Dipole Moments; 13.3 Models of Ferromagnetism and Antiferromagnetism; 13.4 Ferromagnetism in Solids; 13.5 Ferromagnetism in Transition Metals; 13.6 Magnetization of Interacting Bloch electrons; 13.7 The Kondo Effect; 13.9 Anderson model; 13.10 Magnetic Phase Transition; Problems; References; Chapter 14. Superconductivity; 14.1 Properties of Superconductors; 14.2 Meissner-Ochsenfeld Effect; 14.3 The London Equation; 14.4 Ginzburg-Landau Theory; 14.5 Flux Quantization; 14.6 Josephson Effect; 14.7 Microscopic Theory of Superconductivity; 14.8 Strong Coupling Theory of Superconductivity; 14.9 High-temperature Superconductors; Problems; References; Chapter 15. Heavy Fermions; 15.1 Introduction; 15.2 Kondo Lattice, Mixed Valence and Heavy Fermions; 15.3 Mean-field Theories; 15.4 Fermi-Liquid Models; 15.5 Metamagnetism in Heavy Fermions; 15.6 Ce- and U-based Superconducting Compounds; 15.7 Other Heavy-Fermion Superconductors; 15.8 Theories of Heavy-Fermion Superconductivity; 15.9 Kondo Insulators; Problems; References; Chapter 16. Metallic Nanoclusters; 16.1 Introduction; 16.2. Electronic and Geometric Shell Structures; 16.3 Cluster Growth on Surfaces; 16.4 Structure of Isolated Clusters; 16.5. Magnetism in Clusters; 16.6. Superconducting State of Nanoclusters; Problems; References; Chapter 17. Complex Structures; 17.1 Liquids; 17.2 Superfluid; 17.3 Liquid; 17.4 Liquid crystals; 17.5 Quasicrystals; 17.6 Amorphous Solids; Problems; References; Chapter 18. Novel Materials; 18.1 Graphene; 18.2 Fullerenes; 18.3 Fullerenes and Tubule; 18.4 Polymers; 18.5 Solitons in Conducting Polymers; 18.6 Polarons and Bipolarons; 18.7 Photoinduced Electron Transfer; Problems; References; Appendix A. Space Groups and Point Groups; A.1 Introduction; A.2 Space group operations; A.3 Point group operations; A.4 Description of point Groups; A.5 The Cubic group; Appendix B. Mossbauer Effect; B.1 Introduction; B.2 Recoilless fraction; B.3 Average transferred energy; Appendix C. Introduction to Renormalization Group Approach; C.1 Critical Behavior; C.2 Theory of Scaling; C.3 Renormalization Group Approach; Index