# Digital Signal Processing 101

## Everything you need to know to get started

Digital Signal Processing: Everything You Need to Know to Get Started provides a basic tutorial on digital signal processing (DSP). Beginning with discussions of numerical representation and complex numbers and exponentials, it goes on to explain difficult concepts such as sampling, aliasing, imaginary numbers, and frequency response. It does so using easy-to-understand examples and a minimum of mathematics. In addition, there is an overview of the DSP functions and implementation used in several DSP-intensive fields or applications, from error correction to CDMA mobile communication to airborne radar systems. This book is intended for those who have absolutely no previous experience with DSP, but are comfortable with high-school-level math skills. It is also for those who work in or provide components for industries that are made possible by DSP. Sample industries include wireless mobile phone and infrastructure equipment, broadcast and cable video, DSL modems, satellite communications, medical imaging, audio, radar, sonar, surveillance, and electrical motor control.

Audience

Electrical engineers, software engineers, hardware engineers, system engineers and students with no DSP experience

Paperback, 264 Pages

Published: April 2010

Imprint: Newnes

ISBN: 978-1-85617-921-8

## Reviews

• "Signal processing involves a lot more than any author can cover in 275 pages, so realize you will need some additional tutorial information available in online or printed references. Overall, though, this book provides a good starting point for people who need a quick introduction to DSP." - reviewed in Design News

## Contents

• Introduction

Acknowledgments

Chapter 1: Numerical Representation

Â Â Â Â 1.1 Integer Fixed-Point Representation

Â Â Â Â 1.2 Fractional Fixed-Point Representation

Â Â Â Â 1.3 Floating-Point Representation

Chapter 2: Complex Numbers and Exponentials

Â Â Â Â 2.1 Complex Addition and Subtraction

Â Â Â Â 2.2 Complex Multiplication

Â Â Â Â 2.3 Complex Conjugate

Â Â Â Â 2.4 The Complex Exponential

Â Â Â Â 2.5 Measuring Angles in Radians

Chapter 3: Sampling, Aliasing, and Quantization

Â Â Â Â 3.1 Nyquist Sampling Rule

Â Â Â Â 3.2 Quantization

Chapter 4: Frequency Response

Â Â Â Â 4.1 Frequency Response and the Complex Exponential

Â Â Â Â 4.2 Normalizing Frequency Response

Â Â Â Â 4.3 Sweeping across the Frequency Response

Â Â Â Â 4.4 Example Frequency Responses

Â Â Â Â 4.5 Linear Phase Response

Â Â Â Â 4.6 Normalized Frequency Response Plots

Chapter 5: Finite Impulse Response (FIR) Filters

Â Â Â Â 5.1 FIR Filter Construction

Â Â Â Â 5.2 Computing Frequency Response

Â Â Â Â 5.3 Computing Filter Coefficients

Â Â Â Â 5.4 Effect of Number of Taps on Filter Response

Chapter 6: Windowing

Â Â Â Â 6.1 Truncation of Coefficients

Â Â Â Â 6.2 Tapering of Coefficients

Â Â Â Â 6.3 Example Coefficient Windows

Chapter 7: Decimation and Interpolation

Â Â Â Â 7.1 Decimation

Â Â Â Â 7.2 Interpolation

Â Â Â Â 7.3 Resampling by Non-Integer Value

Chapter 8: Infinite Impulse Response (IIR) Filters

Â Â Â Â 8.1 IIR and FIR Filter Characteristic Comparison

Â Â Â Â 8.2 Bilinear Transform

Â Â Â Â 8.3 Frequency Prewarping

Chapter 9: Complex Modulation and Demodulation

Â Â Â Â 9.1 Modulation Constellations

Â Â Â Â 9.2 Modulated Signal Bandwidth

Â Â Â Â 9.3 Pulse-Shaping Filter

Â Â Â Â 9.4 Raised Cosine Filter

Chapter 10: Discrete and Fast Fourier Transforms (DFT, FFT)

Â Â Â Â 10.1 DFT and IDFT Equations

Â Â Â Â 10.2 Fast Fourier Transform (FFT)

Â Â Â Â 10.3 Filtering Using the FFT and IFFT

Â Â Â Â 10.4 Bit Growth in FFTs

Â Â Â Â 10.5 Bit-Reversal Addressing

Chapter 11: Digital Upconversion and Downconversion

Â Â Â Â 11.1 Digital Upconversion

Â Â Â Â 11.2 Digital Downconversion

Â Â Â Â 11.3 IF Subsampling

Chapter 12: Error Correction Coding

Â Â Â Â 12.1 Linear Block Encoding

Â Â Â Â 12.2 Linear Block Decoding

Â Â Â Â 12.3 Minimum Coding Distance

Â Â Â Â 12.4 Convolutional Encoding

Â Â Â Â 12.5 Viterbi Decoding

Â Â Â Â 12.6 Soft Decision Decoding

Â Â Â Â 12.7 Cyclic Redundancy Check

Â Â Â Â 12.8 Shannon Capacity and Limit Theorems

Chapter 13: Analog and TDMA Wireless Communications

Â Â Â Â 13.1 Early Digital Innovations

Â Â Â Â 13.2 Frequency Modulation

Â Â Â Â 13.3 Digital Signal Processor

Â Â Â Â 13.4 Digital Voice Phone Systems

Â Â Â Â 13.5 TDMA Modulation and Demodulation

Chapter 14: CDMA Wireless Communications

Â Â Â Â 14.1 Spread Spectrum Technology

Â Â Â Â 14.2 Direct Sequence Spread Spectrum

Â Â Â Â 14.3 Walsh Codes

Â Â Â Â 14.4 Concept of CDMA

Â Â Â Â 14.5 Walsh Code Demodulation

Â Â Â Â 14.6 Network Synchronization

Â Â Â Â 14.7 RAKE Receiver

Â Â Â Â 14.8 Pilot PN Codes

Â Â Â Â 14.9 CDMA Transmit Architecture

Â Â Â Â 14.10 Variable Rate Vocoder

Â Â Â Â 14.11 Soft Handoff

Â Â Â Â 14.12 Uplink Modulation

Â Â Â Â 14.13 Power Control

Â Â Â Â 14.14 Higher Data Rates

Â Â Â Â 14.15 Spectral Efficiency Considerations

Â Â Â Â 14.16 Other CDMA Technologies

Chapter 15: OFDMA Wireless Communications

Â Â Â Â 15.1 WiMax and LTE

Â Â Â Â 15.2 OFDMA Advantages

Â Â Â Â 15.3 Orthogonality of Periodic Signals

Â Â Â Â 15.4 Frequency Spectrum of Orthogonal Subcarrier

Â Â Â Â 15.5 OFDM Modulation

Â Â Â Â 15.6 Intersymbol Interference and the Cyclic Prefix

Â Â Â Â 15.7 MIMO Equalization

Â Â Â Â 15.8 OFDMA System Considerations

Â Â Â Â 15.9 OFDMA Spectral Efficiency

Â Â Â Â 15.10 OFDMA Doppler Frequency Shift

Â Â Â Â 15.11 Peak to Average Ratio

Â Â Â Â 15.12 Crest Factor Reduction

Â Â Â Â 15.13 Digital Predistortion

Â Â Â Â 16.1 Radar Frequency Bands

Â Â Â Â 16.2 Radar Antennas

Â Â Â Â 16.3 Radar Range Equation

Â Â Â Â 16.4 Stealth Aircraft

Â Â Â Â 16.5 Pulsed Radar Operation

Â Â Â Â 16.6 Pulse Compression

Â Â Â Â 16.7 Pulse Repetition Frequency

Â Â Â Â 16.8 Detection Processing

Â Â Â Â 17.1 Doppler Effect

Â Â Â Â 17.2 Pulsed Frequency Spectrum

Â Â Â Â 17.3 Doppler Ambiguities

Â Â Â Â 17.4 Radar Clutter

Â Â Â Â 17.5 PRF Trade-offs

Â Â Â Â 17.6 Target Tracking

Â Â Â Â 18.1 SAR Resolution

Â Â Â Â 18.2 Pulse Compression

Â Â Â Â 18.3 Azimuth Resolution

Â Â Â Â 18.4 SAR Processing

Â Â Â Â 18.5 SAR Doppler Processing

Â Â Â Â 18.6 SAR Impairments

Chapter 19: Introduction to Video Processing

Â Â Â Â 19.1 Color Spaces

Â Â Â Â 19.2 Interlacing

Â Â Â Â 19.3 Deinterlacing

Â Â Â Â 19.4 Image Resolution and Bandwidth

Â Â Â Â 19.5 Chroma Scaling

Â Â Â Â 19.6 Image Scaling and Cropping

Â Â Â Â 19.7 Alpha Blending and Compositing

Â Â Â Â 19.8 Video Compression

Â Â Â Â 19.9 Video Interfaces

Chapter 20: Implementation Using Digital Signal Processors

Â Â Â Â 20.1 DSP Processor Architectural Enhancements

Â Â Â Â 20.2 Scalability

Â Â Â Â 20.3 Floating Point

Â Â Â Â 20.4 Design Methodology

Â Â Â Â 20.5 Managing Resources

Â Â Â Â 20.6 Ecosystem

Chapter 21: Implementation Using FPGAs

Â Â Â Â 21.1 FPGA Design Methodology

Â Â Â Â 21.2 DSP Processor or FPGA Choice

Â Â Â Â 21.3 Design Methodology Considerations

Â Â Â Â 21.4 Dedicated DSP Circuit Blocks in FPGAs

Â Â Â Â 21.5 Floating Point in FPGAs

Â Â Â Â 21.6 Ecosystem

Â Â Â Â 21.7 Future Trends

Appendix A: Q Format Shift with Fractional Multiplication

Appendix B: Evaluation of FIR Design Error Minimization

Appendix C: Laplace Transform

Appendix D: Z-Transform

Appendix E: Binary Field Arithmetic

Index