COVID-19 Update: We are currently shipping orders daily. However, due to transit disruptions in some geographies, deliveries may be delayed. To provide all customers with timely access to content, we are offering 50% off Science and Technology Print & eBook bundle options. Terms & conditions.
High Brightness Light Emitting Diodes - 1st Edition - ISBN: 9780127521565, 9780080864457

High Brightness Light Emitting Diodes, Volume 48

1st Edition

Serial Volume Editors: Gerald Stringfellow M. Craford
Serial Editors: Robert Willardson Eicke Weber
eBook ISBN: 9780080864457
Imprint: Academic Press
Published Date: 8th October 1997
Page Count: 469
Sales tax will be calculated at check-out Price includes VAT/GST
Price includes VAT/GST

Institutional Subscription

Secure Checkout

Personal information is secured with SSL technology.

Free Shipping

Free global shipping
No minimum order.

Table of Contents

G.B. Stringfellow, Materials Issues in High Brightness Light Emitting Diodes. M.G. Craford, Overview of Device Issues in High Brightness Light Emitting Modes. F.M. Steranka, AlGaAs Red LEDs. C.H. Chen, S.A.Stockman, M.J. Peanasky, and C.P. Kuo, OMVPE Growth of AlGaInP for High-Efficiency Visible Light Emitting Diodes. F.A. Kish and R.M. Fletcher, AlGaInP Light-Emitting Diodes. M.W. Hodapp, Applications for High Brightness LEDs. I. Akasakiand H. Amano, Organometallic Vapor Phase Epitaxy of GaN for High Brightness Blue Light Emitting Diodes. S. Nakamura, III-V Nitride Based uv/Blue/Green/Yellow LEDs and LDs. Subject Index.


Volume 48in the Semiconductors and Semimetals series discusses the physics and chemistry of electronic materials, a subject of growing practical importance in the semiconductor devices industry. The contributors discuss the current state of knowledge and provide insight into future developments of this important field.


Libraries, researchers, graduate students and practitioners in materials science (electronic materials field), and electrical engineering (field of electronic devices).


No. of pages:
© Academic Press 1997
8th October 1997
Academic Press
eBook ISBN:

Ratings and Reviews

About the Serial Volume Editors

Gerald Stringfellow

Stringfellow was among the pioneers of the organometallic vapor phase epitaxial (OMVPE) growth technique, beginning his work in this area in 1975. He has published over 150 papers on this subject and delivered 30 invited papers at national and international conferences during the last 5 years. This work emphasizes the materials science aspects of OMVPE growth, including the thermodynamic and kinetic aspects of the process, the development of new source materials, and the growth of metastable alloys. The first epitaxial layers of InAsSb in the range of solid immiscibility. InPSb, GaPSb, GaInPSb, GaInAsSb, InAsBi, InSbBi, and InAsSbBi, inside the miscibility gap, were produced in Stringfellow’s group. The growth of immiscible alloys has led to the discovery of atomic scale ordering in many III/V alloys. He and his students recently demonstrated the control of domain size in these ordered materials by using grooves photolithographically produced on the (001) surface. This had resulted in the largest ordered domains ever produced in semiconductor materials. Current research focuses on the ordering mechanism, particularly the effects of surface structure on ordering.Other important work is involved with the development of new procedures for OMVPE. He and his students pioneered the now widely-used tertiarybutylarsine and tertiarybutylphosphine. They also used several other precursors for the first time, including: ethyldimethylindium, triisopropylantimony, triallylantimony, trivinylantimony, and tertiarybutyldimethylantimony.

Affiliations and Expertise

University of Utah, Salt Lake City, U.S.A.

M. Craford

Affiliations and Expertise

Hewlett Packard

About the Serial Editors

Robert Willardson

Affiliations and Expertise


Eicke Weber

Affiliations and Expertise

Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg, Germany