New assay could revolutionize detection and treatment of acute myeloid leukemia
Philadelphia | 2023年11月13日
More accurate detection of a specific molecular marker in leukemic cells will help assess measurable residual disease and guide treatment decisions, improving patient outcomes, report investigators in The Journal of Molecular Diagnostics
A novel assay that detects a unique molecular marker in patients with acute myeloid leukemia (AML) may revolutionize the way this disease is detected and treated according to a new report 新しいタブ/ウィンドウで開く in The Journal of Molecular Diagnostics 新しいタブ/ウィンドウで開く published by Elsevier. This assay may improve detection of AML driven by KMT2A gene fusions and may affect treatment decision-making, assessing response to therapy, and long-term surveillance.
AML is a rare, aggressive blood cancer diagnosed in around 120,000 individuals worldwide each year. Detecting residual disease during treatment is essential for determining prognosis and guiding treatment decisions. Currently, the methods for detecting measurable residual disease (MRD) during treatment for AML include bone marrow morphology, multiparameter flow cytometry (MPFC), and DNA sequencing. Morphologic assessment only detects leukemic cells at a 5% limit of detection. MPFC has a more sensitive limit of detection at 0.01% to 0.001%, but is challenging to implement and interpret, and is not standardized between laboratories. DNA sequencing approaches can identify leukemic cells by their somatic mutation profile but are expensive and can be confounded by clonal hematopoiesis in non-leukemic blood cells.
Lead investigator Grant A. Challen, PhD, Division of Oncology, Department of Medicine, Washington University School of Medicine in St. Louis. Explains, “Oncogenic fusions are often disease-defining and present a unique marker of leukemic cells that are not usually present in healthy cells. Other diseases such as chronic myeloid leukemia (CML) can already be tracked by the canonical BCR-ABL fusion and sensitively detecting these fusions has revolutionized how CML is treated. For AML patients with oncogenic fusions driving their disease, the KMT2A fusion is a molecular marker that can be leveraged for sensitive MRD detection. We therefore wanted to develop a platform for sensitive KMT2A fusion-detection to improve how we detect and treat this disease.”
Investigators developed a novel droplet digital PCR assay enabling sensitive KMT2A fusion detection with the five most common fusion partners. There are at least 80 known KMT2A fusion partners, but about 80% of fusions involve just five partners — AF9, AF6, AF4, ELL, and ENL. They benchmarked the assay in human cell lines and patient samples to demonstrate sensitive and specific KMT2A fusion detection. The assay detects these fusions by partitioning cDNA molecules into microfluidic droplets that are assayed with primers and probes that only produce a positive signal when fusion transcripts are present. Investigators were able to combine multiple primer/probe sets targeting different fusions into a pooled fusion detection reagent. They also showed detection of KMT2A fusions in patient samples known to harbor KMT2A fusions.
Dr. Challen notes, “We show that the assay does not produce false-positive signals in samples from healthy individuals. The assay is easily expanded to include additional oncogenic fusions. This has potential impact for treatment decision-making and assessing response to therapy. Knowing whether a treatment is working or not is critically important for decisions regarding when to escalate therapy or pursue hematopoietic stem cell transplant.”
He concludes, “This is a robust new tool for sensitive KMT2A fusion detection that is directly applicable for disease detection in patients with leukemia driven by these fusions. It fills a void for oncogenic fusion detection and provides some technical improvements. The assay is also scalable—additional fusions can be easily added to the assay—to expand coverage for other oncogenic fusions. We are improving blood cancer detection one drop at a time!”
---
Notes for editors
The article is “Droplet Digital PCR for Oncogenic KMT2A Fusion Detection,” by Andrew L. Young, Hannah C. Davis, and Grant A. Challen (https://doi.org/10.1016/j.jmoldx.2023.09.006 新しいタブ/ウィンドウで開く). It appears online ahead of The Journal of Molecular Diagnostics, volume 25, issue 12 (December 2023), published by Elsevier.
The article is openly available at https://www.jmdjournal.org/article/S1525-1578(23)00222-2/fulltext 新しいタブ/ウィンドウで開く.
Full text of this study is also available to credentialed journalists upon request; contact Eileen Leahy at +1 732 238 3628 or [email protected] 新しいタブ/ウィンドウで開く. Journalists wishing to interview the authors should contact Dr. Grant Challen at +1 314 362 0987 or [email protected] 新しいタブ/ウィンドウで開く.
The study was partly supported by NIH grants R01 HL147978, R01 CA236819, and R01 DK124883, the Leukemia and Lymphoma Society, and an ASH Research Training Award for Fellows.
About The Journal of Molecular Diagnostics
The Journal of Molecular Diagnostics 新しいタブ/ウィンドウで開く, the official publication of the Association for Molecular Pathology, co-owned by the American Society for Investigative Pathology, and published by Elsevier, seeks to publish high quality original papers on scientific advances in the translation and validation of molecular discoveries in medicine into the clinical diagnostic setting, and the description and application of technological advances in the field of molecular diagnostic medicine. The editors welcome review articles that contain: novel discoveries or clinicopathologic correlations, including studies in oncology, infectious diseases, inherited diseases, predisposition to disease, or the description of polymorphisms linked to disease states or normal variations; the application of diagnostic methodologies in clinical trials; or the development of new or improved molecular methods for diagnosis or monitoring of disease or disease predisposition. www.jmdjournal.org 新しいタブ/ウィンドウで開く
エルゼビアについて
エルゼビアは情報分析を専門としたグローバル企業として、研究者や医療専門家の方々を支援し、社会にとっての利益最大化に向けて、科学や医療の進展を支えています。これは、信頼できるエビデンスによるコンテンツと高度なAI対応によるデジタル技術に基づく革新的なソリューションにより、知見の集積や重要な意思決定を支援することで実現されています。
エルゼビアは、全世界で9,700人の従業員(うち技術者2,300人以上)を抱え、140年以上にわたって、研究者、図書館員、アカデミックリーダー、資金提供者、政府、研究開発集約型企業、医師、看護師、将来の医療専門家、教育者など研究・医療分野におけるパートナーの重要な活動を支援してきました。エルゼビアが刊行する3,000誌以上の科学ジャーナルと代表的な参考書には、The Lancet 新しいタブ/ウィンドウで開く、Cell Press 新しいタブ/ウィンドウで開くおよびGray’s Anatomyなどをはじめとする、各分野を代表する主要なタイトルが含まれています。 エルゼビア・ファンデーション 新しいタブ/ウィンドウで開くとの活動を通し、私たちがサービスを提供する地域社会と連携して、開発途上国を含む世界中の医学、研究、医療分野における、インクルージョン&ダイバーシティ(I&D)の改善に努めています。
エルゼビアは、専門家および企業向けの情報分析および意思決定ツールのグローバルプロバイダーであるRELX Group 新しいタブ/ウィンドウで開くの一事業を担っています。エルゼビアの事業内容、デジタルソリューション、コンテンツなどの詳細については、www.elsevier.comをご覧ください。
連絡先
EL
CCP
Chhavi Chauhan, PhD
Director of Scientific Outreach
The American Journal of Pathology
+1 240 283 9724
E-mail Chhavi Chauhan, PhD