Sampling of Embryonic DNA After IVF Without Biopsy

New study published in Reproductive Biomedicine Online shows that fluid-filled cavity in 5-day old human blastocysts may contain DNA from the embryo, allowing diagnosis of genetic disease without a biopsy

Cambridge, UK, April 2, 2013

Preimplantation genetic diagnosis (PGD) technologies allow identification of genetic disorders in human preimplantation embryos after in vitro fertilization (IVF) and before the embryo is transferred back to the patient. This technique allows couples with a high-risk of passing on inherited diseases, to increase their chances of having a healthy baby. Despite the theoretical benefits of PGD, clinical outcomes using these technologies vary, possibly because of the need to remove one or more cells from the embryo using biopsy.

In a recent study published in Reproductive Biomedicine Online, a group of researchers from Italy and the United Kingdom sought to achieve diagnose of genetic disease in embryonic DNA without the use of a biopsy. By extracting fluid from human embryos at the blastocyst stage they found that it contains DNA from the embryo. Blastocysts are 5 or 6 day old embryos and are at the last free-living stage that can be studied in the laboratory prior to transfer into the uterus. They contain between 50 and 300 cells that surround a fluid-filled cavity called the blastocoels. The researchers carefully removed fluid from the blastocoel, leaving the cells intact; the sampled blastocysts were subsequently cryopreserved. Analysis of this fluid showed that it contained cell-free DNA in a state good enough to determine several known genes of the sex chromosomes by polymerase chain reaction (PCR); whole genome amplification and followed by analysis using a specialized tool for genetic testing called a DNA microarray were also used and revealed whether the embryos had a normal number of chromosomes – chromosome abnormalities are one of the main causes of miscarriage and failure of embryos to form pregnancies during IVF treatments.

“This is the first time that embryonic DNA has been detected in the human blastocyst without the use of biopsy,” explained lead researchers Dr. Simone Palini Ph.D., from the IVF Unit at Cervesi Hospital in Cattolica, Italy and Dr. Galluzzi from University of Urbino in Italy and Dr. Dagan Wells from University of Oxford, United Kingdom.

“This is a technique that most embryologists can easily master,” Dr. Buletti who directs the IVF team at Cervesi Hospital Cattolica and Prof. Magnani, Chairman of the Department of Biomolecular Sciences of the University of Urbino, added. “More work needs to be done to confirm our results, but we hope that this approach will ultimately help infertile couples achieve their dream of having a family. It may also improve the options for families affected by severe inherited conditions, helping them to have healthy babies.”

“Even though it is only a preliminary finding, this approach may allow for genetic testing of the embryo without the complexity of cell sampling,” Dr. Joe Leigh Simpson MD, Senior Vice President for Research Programs, March of Dimes Foundation and President, International Federation of Fertility Societies (IFFS), a pioneer in reproductive medicine and genetics, commented on the research.

This article is “Genomic DNA in human blastocoele fluid” by S. Palini, L. Galluzzi, S. De Stefani, M. Bianchi, D. Wells, M. Magnani, C. Bulletti (10.1016/j.rbmo.2013.02.012).The article is currently an Article in Press in Reproductive Biomedicine Online, (March, 2013), published by Elsevier.

# # #

Notes for Editors
Full text of the article is available to credentialed journalists upon request; contact newsroom@elsevier.com. Journalists wishing to interview the authors may contact Greyling Peoples at +31 20 485 3323 or g.peoples@elsevier.com.

About the authors
Simone Palini
IVF Unit, ‘Cervesi’ Hospital Cattolica, 47841 Cattolica (Rn), Italy

L. Galluzzi
Department of Biomolecular Sciences, University of Urbino ‘Carlo Bo’, 61029, Urbino (PU), Italy

S. De Stefani
IVF Unit, ‘Cervesi’ Hospital Cattolica, 47841 Cattolica (Rn), Italy

M. Bianchi
Department of Biomolecular Sciences, University of Urbino ‘Carlo Bo’, 61029, Urbino (PU), Italy

Dagan Wells
University of Oxford, Institute of Reproductive Sciences, Oxford Business, Park North, Oxford, United Kingdom

M. Magnani
Chairman of the Department of Biomolecular Sciences of the University of Urbino

About Reproductive Biomedicine Online
Reproductive BioMedicine Online (www.rbmojournal.com) covers the formation, growth and differentiation of the human embryo. It is intended to bring to public attention new research on biological and clinical research on human reproduction and the human embryo including relevant studies on animals. It is published by a group of scientists and clinicians working in these fields of study. Its audience comprises researchers, clinicians, practitioners, academics and patients.

It is an official publication of:

The American Association of Bioanalysts (AAB) www.aab.org

Alpha – Scientists in Reproductive Medicine, http://alphascientists.org

The American College of Embryology (ACE) www.embcol.org

The Global Chinese Association for Reproductive Medicine (GCARM) www.gcarm.com

The International Society for In Vitro Fertilization (ISIVF) www.isivf.com

The Mediterranean Society for Reproductive Medicine (MSRM) www.medreproduction.org

The Preimplantation Genetic Diagnosis International Society (PGDIS) www.pgdis.org

The Turkish Society of Reproductive Medicine (TSRM) www.tsrm.org.tr

About Elsevier

Elsevier is a world-leading provider of information solutions that enhance the performance of science, health, and technology professionals, empowering them to make better decisions, deliver better care, and sometimes make groundbreaking discoveries that advance the boundaries of knowledge and human progress. Elsevier provides web-based, digital solutions — among them ScienceDirect, Scopus, Elsevier Research Intelligence,and ClinicalKey—and publishes over 2,200 journals, including The Lancet and Cell, and over 25,000 book titles, including a number of iconic reference works.

The company is part of Reed Elsevier Group PLC, a world leading provider of professional information solutions in the Science, Medical, Legal and Risk and Business sectors, which is jointly owned by Reed Elsevier PLC and Reed Elsevier NV. The ticker symbols are REN (Euronext Amsterdam), REL (London Stock Exchange), RUK and ENL (New York Stock Exchange).

Media contact
Greyling Peoples
Elsevier
+31 20 485 3323
g.peoples@elsevier.com