Improving Anxiety Treatment through the Help of Brain Imaging: A Potential Future Treatment Strategy

New study published in Biological Psychiatry

Philadelphia, PA, May 8, 2008 – Wouldn’t it be nice if our doctors could predict accurately whether we would respond to a particular medication? This question is important because research studies provide information about how groups of patients tend to respond to treatments, but inevitably, differences among groups of patients with the same diagnosis mean that findings about groups of patients may not apply to individuals from those groups. “Personalized medicine” is the effort to match particular treatments to particular patients on the basis of genetic information or other biological markers. In a new article published in Biological Psychiatry on May 1st, researchers report their findings on the potential use of functional magnetic resonance imaging (fMRI) to match treatments for patients with generalized anxiety disorder (GAD).

Whalen and colleagues recruited subjects diagnosed with GAD who underwent brain scans both before and after treatment with venlafaxine, an antidepressant that has been shown to be effective in treating anxiety. During the fMRI scans, the participants’ responses to viewing pictures of fearful facial expressions were measured. Dr. Paul Whalen, corresponding author for this article, explains, “We focused our study on a regulatory circuit in the brain involving the amygdala, an area that serves to detect the presence of threatening information, and the prefrontal cortex, an area that functions to control these threat responses when they are exaggerated or unnecessary.”

The researchers found that approximately two thirds of the patients experienced relief from their anxiety symptoms after treatment, and of those who improved, some responded better than others. As hypothesized, the fMRI data predicted who would do well on the drug and who would not. According to Dr. Whalen, “subjects who showed high prefrontal cortex activation together with low amygdala activation in response to the fearful faces reported a significant decrease in their anxiety symptoms, while those showing the reverse brain activation pattern (i.e., high amygdala, low prefrontal) did not.”

John H. Krystal, M.D., Editor of Biological Psychiatry and affiliated with both Yale University School of Medicine and the VA Connecticut Healthcare System, comments on this study, “There is a tremendous need for biomarkers of treatment response. The paper by Whalen et al. joins a small group of preliminary studies suggesting that fMRI research might contribute to the effort to develop treatment biomarkers.” He cautions, though, that “while these are exciting data, we have yet to see this type of biomarker receive sufficient rigorous validation to be useful for matching patients to existing treatments or to test new potential treatment mechanisms.” Dr. Whalen acknowledges the preliminary nature of their findings, noting that “future studies will be needed to determine the exact impact that brain imaging might have in helping physicians prescribe anti-anxiety medications,” but he concludes that “while a brain scan would be a relatively expensive addition to the prescribing procedure, this cost pales in comparison to the amount of time, money and angst invested by patients who go through multiple medications and dosages looking for relief.”

# # #

Notes to Editors:
The article is “A Functional Magnetic Resonance Imaging Predictor of Treatment Response to Venlafaxine in Generalized Anxiety Disorder” by Paul J. Whalen, Tom Johnstone, Leah H. Somerville, Jack B. Nitschke, Sara Polis, Andrew L. Alexander, Richard J. Davidson and Ned H. Kalin. Drs. Whalen and Somerville are affiliated with the Department of Psychological and Brain Sciences, Dartmouth College, Hanover, New Hampshire. Drs. Johnstone, Nitschke, Polis, Alexander, Davidson and Kalin are affiliated with the Departments of Psychiatry and Psychology, University of Wisconsin – Madison and The Waisman Center for Functional Brain Imaging and Behavior in Madison, Wisconsin. The article appears in Biological Psychiatry, Volume 63, Issue 9 (May 1, 2008), published by Elsevier.

Full text of the article mentioned above is available upon request. Contact Jayne M. Dawkins at (215) 239-3674 or ja.dawkins@elsevier.com to obtain a copy or to schedule an interview.

About Biological Psychiatry
This international rapid-publication journal is the official journal of the Society of Biological Psychiatry. It covers a broad range of topics in psychiatric neuroscience and therapeutics. Both basic and clinical contributions are encouraged from all disciplines and research areas relevant to the pathophysiology and treatment of major neuropsychiatric disorders. Full-length and Brief Reports of novel results, Commentaries, Case Studies of unusual significance, and Correspondence and Comments judged to be of high impact to the field are published, particularly those addressing genetic and environmental risk factors, neural circuitry and neurochemistry, and important new therapeutic approaches. Concise Reviews and Editorials that focus on topics of current research and interest are also published rapidly.

Biological Psychiatry is ranked 4th out of the 95 Psychiatry titles and 16th out of 199 Neurosciences titles on the 2006 ISI Journal Citations Reports® published by Thomson Scientific.

About Elsevier

Elsevier is a world-leading provider of information solutions that enhance the performance of science, health, and technology professionals, empowering them to make better decisions, deliver better care, and sometimes make groundbreaking discoveries that advance the boundaries of knowledge and human progress. Elsevier provides web-based, digital solutions — among them ScienceDirect, Scopus, Elsevier Research Intelligence,and ClinicalKey—and publishes over 2,200 journals, including The Lancet and Cell, and over 25,000 book titles, including a number of iconic reference works.

The company is part of Reed Elsevier Group PLC, a world leading provider of professional information solutions in the Science, Medical, Legal and Risk and Business sectors, which is jointly owned by Reed Elsevier PLC and Reed Elsevier NV. The ticker symbols are REN (Euronext Amsterdam), REL (London Stock Exchange), RUK and ENL (New York Stock Exchange).

Media Contact:
Jayne Dawkins
Elsevier
+1 215 239 3674
ja.dawkins@elsevier.com