Virtual Special Issue: From One Giant Leap to the Next - NEW!


It is 45 years ago that man first walked on the moon. Since then research in the field of traveling and living in space has taken a huge leap. We have also witnessed that humans can live for longer periods of time in space, for instance at the International Space Station (ISS).

For this Special Edition, we have interviewed Arno Wielders, co-founder of the Mars One. He shares with us his view on future possibilities with respect to space travel and living in outer space.

We have also selected below 12 scientific articles from ScienceDirect that are relevant to these developments. They are all free to access until 31 December, 2014.

The next big leap?

The Mars One mission, a not-for-profit foundation, aims at establishing a permanent human settlement on Mars. Crews of four astronauts will depart every two years, starting in 2024. The first unmanned mission will be launched in 2018.

Not only it is a daring and ambitious venture, the public is heavily involved – in acquiring funding and in recruiting and selecting of the first Mars settlers. From the 200.000 applicants interested in becoming Mars settlers, 705 candidates remain after the first selection round in May. Five to ten crews of four people will make the first mission and there will be additional crews for the flights after. People will not pay for their flights; they become part of Mars One.

Interview with Mars One Co-Founder and Chief Technical Officer Arno Wielders:

What motivates you to work on this project?

My main motivation is that I would like to see the expansion of the human race into outer space in the form of permanent settlements. Having humans living in settlements out of Earth will bring from my point of view a new diversity in humanity which would benefit us all. Mars One's main goal is to establish a human settlement on the 'easiest' place in our solar system. Other places in our solar system are much more difficult to settle. Mars has a lot of similarities with respect to the Earth, day and night, approximation to Earth, seasons on Mars due to rotation axis angle with respect to the ecliptic plane similar to Earth. And finally, Mars has a lot of resources which can be used by the settlers' in-situ such that the amount of resources imported from Earth will be minimized.

What scientific knowledge and- developments in the field of physics led you to believe colonizing Mars is a feasible mission?

Mars One is capitalizing on developments already taking place in the space industry, most specifically in the United States. As Mars One will contract large aerospace companies to build all the main elements of the Mars One missions, the chances of succeeding are maximized due to the large experience of these companies in previous large aerospace projects. Furthermore some technology developments have taken place, which will either reduce mass or cost. From a cost point of view, the developments from Space X (a company that designs and manufactures rockets and spacecraft) in the US are leading to lower launch costs and the possibility to launch more rockets (Falcon Heavy launcher) and more often (reusability of rocket stages and multiple launch sites).

Launch costs have been the major obstacle in launching large infrastructure in space. The cost per kilogram to bring into space has been prohibitively high for starting large-scale commercial projects in space. With the new launcher from Space X, the Falcon 9 and the Falcon Heavy, launch costs have been reduced and the capability of bringing more than 50 tons in low earth orbit becomes possible again with the Falcon Heavy with innovative ways of producing rocket parts.

Furthermore, the results from the RAD (Radiation Assessment Detector) onboard instrument Curiosity has measured the radiation impact on electronics and humans for a trip of seven months to Mars and the radiation dose per day on the surface of Mars. The results show that humans will receive a higher dose, but this dose is certainly not a showstopper for a human mission to Mars. On the surface of Mars the living modules will be protected with a significant layer of regolith (dust, soil and other materials), which provides protection from radiation. Also here, the analyses have shown that spending your life on Mars will be possible.

Additional developments have taken place in inflatable structures. The Transhab technology of NASA has been commercialized by Bigelow Aerospace and this company will attach an inflatable habitat to the ISS (International Space Station) in 2016. The same technology is planned for a habitat when bringing people from Earth to Mars and to provide additional living space on Mars.

Also in the field of Entry, Descent and Landing (EDL)a lot of developments are taking place including inflatable heat shields and more capable parachutes. Furthermore, the work of Space X in trying to bring the first stage back to the launch site and the advancements of the Dragon spacecraft for manned missions with supersonic retro-propulsion will increase the total mass we can land on Mars.

With all the long-term duration missions on the ISS, we are learning a lot about the effects of microgravity on the human body. Counter measures in the form of medicines and strict training regimes are being implemented, Also, with the one-year duration missions on the ISS starting next year, we will know much more in five years' time, -. As a result, the physical condition of people will be much better than it would be currently after a six month stay in microgravity.

Finally, in the field of life support systems and in-situ resource utilization lots of developments have led us to believe that Mars One mission is possible.

What major scientific breakthroughs in physics do you expect the coming years?

With the new interest in spaceflight and the transition of spaceflight from government to commerce, the speed with which developments will occur will increase. The research will lead in the long run to propulsion systems capable of reducing transit times from Earth to Mars to a couple of weeks. Further in the future, I personally expect a lot from the very experimental research done by NASA on propulsion systems, which could make travel to other star systems possible. These new propulsion systems will be based on complete new physics or significant improvement of our understanding of the theory of general relativity of Einstein and quantum mechanics.

What do you see as the main challenge for the Mars One project? And when will you consider this mission to be a success?

The main challenge is not the engineering, even though it is an extremely complex technical project, but the financial part of the project. Finding investors or entities willing to invest large sums of money into a project like this is extremely hard and I consider that the largest challenge we have to meet. Personally, I consider Mars One successful when the first people on Mars have been able to set up a prosperous colony on Mars. As an intermediate step, I would be extremely proud already if we can make our 2018 mission a success. It would mean that private entities can go to Mars, not only large governmental organizations.

What do you think will be next, when we celebrate the 45th anniversary of the Mars experiment?

By that time, humanity will already have expanded further, with possible colonies on asteroids, Callisto (a moon of Jupiter) in the Jovian system and perhaps even a colony in the Saturn system. During that time, we will have realized that the full solar system is part of the economic influence sphere of the Earth. Related to that we will have taken proper actions to preserve good old Earth from potential asteroid hazards and get all the needed resources for Earth to ensure a bright future.



Biological effects of space radiation and development of effective countermeasures
Ann R. Kennedy
Life Sciences in Space Research
, Volume 1, April 2014

Validation of CO 4th positive radiation for Mars entry
A.M. Brandis, C.O. Johnston, B.A. Cruden, D.K. Prabhu, A.A. Wray, Y. Liu, D.W. Schwenke, D. Bose
Journal of Quantitative Spectroscopy and Radiative Transfer
, Volume 121, May 2013

Analysis of some Earth, Moon and Mars samples in terms of gamma ray energy absorption buildup factors: Penetration depth, weight fraction of constituent elements and photon energy dependence
Murat Kurudirek, Bekir Dogan, Yüksel Özdemir, Anderson Camargo Moreira, Carlos Roberto Appoloni
Radiation Physics and Chemistry
, Volume 80, Issue 3, March 2011


A new conceptual design approach for habitative space modules
C. Burattini, F. Bisegna, F. Gugliermetti, M. Marchetti
Acta Astronautica
, Volume 97, April–May 2014


The evaluation of upper body muscle activity during the performance of external chest compressions in simulated hypogravity
Rebecca G. Krygiel, Abigail B. Waye, Rafael Reimann Baptista, Gustavo Sandri Heidner, Lucas Rehnberg, Thais Russomano
Life Sciences in Space Research
, Volume 1, April 2014

A high-performance ground-based prototype of horn-type sequential vegetable production facility for life support system in space
Yuming Fu, Hui Liu, Lingzhi Shao, Minjuan Wang, Yu A. Berkovich, A.N. Erokhin, Hong Liu
Advances in Space Research
, Volume 52, Issue 1, 1 July 2013

Entry, Descent and Landing

Powered-descent trajectory optimization scheme for Mars landing
Rongjie Liu, Shihua Li, Xisong Chen, Lei Guo
Advances in Space Research, Volume 52, Issue 11, 1 December 2013

Interplanetary spacecraft navigation using pulsars
X.P. Deng, G. Hobbs, X.P. You, M.T. Li, M.J. Keith, R.M. Shannon, W. Coles, R.N. Manchester, J.H. Zheng, X.Z. Yu, D. Gao, X. Wu, D. Chen
Advances in Space Research, Volume 52, Issue 9, 1 November 2013 

Life Support Systems

Biological filter capable of simultaneous nitrification and denitrification for Aquatic Habitat in International Space Station
H. Uemoto, T. Shoji, S. Uchida
Life Sciences in Space Research, Volume 1, April 2014

Key ecological challenges for closed systems facilities
Mark Nelson, William F. Dempster, John P. Allen
Advances in Space Research
, Volume 52, Issue 1, 1 July 2013

Improvements in and actual performance of the Plant Experiment Unit onboard Kibo, the Japanese experiment module on the international space station
Sachiko Yano, Haruo Kasahara, Daisuke Masuda, Fumiaki Tanigaki, Toru Shimazu, Hiromi Suzuki, Ichirou Karahara, Kouichi Soga, Takayuki Hoson, Ichiro Tayama, Yoshikazu Tsuchiya, Seiichiro Kamisaka
Advances in Space Research, Volume 51, Issue 5, 1 March 2013

Space Policy

Rethinking public–private space travel
Chad Anderson
Space Policy
, Volume 29, Issue 4, November 2013