• Z. Brzozka

    Warsaw University of Technology, Warsaw, Poland

    Lab-on-a-Chip devices and their applications: Analytical microsystems, Miniaturized analytical devices based on microfluidics principle, Fabrication technology of microfluidic devices and systems; Electrochemical (bio)sensors and their biomedical applications: Electrochemical sensor for liquid samples, Affinity Biosensors, Biocatalytic Biosensors; Actuators.

    Email Z. Brzozka

  • R.E. Gyurcsányi

    Budapest University of Technology and Economics, Budapest, Hungary

    Electrochemical sensors (ion-selective electrodes, amperometric (bio)sensors, nanopore-based sensors, and ultramicroelectrodes), Optical sensors (optodes and surface plasmon resonance biosensors), Affinity biosensors, Mass-sensitive transducers, Development and application of selective synthetic receptors (nucleic acid analogs, aptamers, molecularly imprinted polymers, ionophores, etc.), Chemical imaging and microarrays.

    Email R.E. Gyurcsányi

  • J.-H. Lee

    Korea University, Seoul, The Republic of Korea

    Metal oxide gas sensors, Metal oxide nanostructures for gas sensor applications, Metal oxide humidity sensors, Electrochemical gas sensors using solid oxide electrolytes, Sensing principles and mechanisms, Carbon-based gas sensors.

    Email J.-H. Lee

  • R. Moos

    Universität Bayreuth, Bayreuth, Germany

    Exhaust gas sensors, Solid state gas sensor materials, Solid state gas sensor principles, Solid state gas sensor technology and Solid state gas sensor modeling; Solid state electrochemical sensors; Conductometric or impedancemetric sensors of framework-based materials (zeolites, MOF); Transducer technology, LTCC, HTCC, hot plates; Chemical sensors for harsh environments.

    Email R. Moos

  • R. Narayanaswamy

    Optical Chemical sensors and Biosensors: development, applications and analytical instrumentation. New materials, devices, nano materials for optical chemical sensing, for environmental, biochemical and industrial applications; Colorimetric and Fluorescence based sensing systems. Nanoparticles, molecularly imprinted polymers, quantum dots, carbon dots and other novel materials in sensors; Surface Plasmon Resonance sensors and sensing systems: devices and instrumentation with application; Mass sensitive devices, instrumentation and applications, e.g. SAW, BAW, QCM, QMB, etc.

    Email R. Narayanaswamy

  • D. Papkovsky

    University College Cork, Cork, Ireland

    Fluorescence spectroscopy, Time-resolved fluorescence; Oxygen sensors; Sensor material chemistry.

    Email D. Papkovsky

  • G. Rivas

    Universidad Nacional de Córdoba, Córdoba, Argentina

    Electrochemical devices; Electrochemical (bio)sensors; Enzymatic biosensors; Affinity biosensors; Biocatalytic sensors; DNA biosensors; Hybridization and DNA-damage biosensors; Immunosensors; Aptasensors, Glycobiosensors. (Bio)Sensing principles. Nanobiotechnology and Nanobiomedicine: (bio)sensors based on nanomaterials (carbon nanotubes, graphene and related materials, nanoparticles). Neurotransmitters sensors. Biomarkers Sensors. Modified electrodes. Surface plasmon resonance biosensors. Biomedical and Environmental applications

    Email G. Rivas

  • Y. Shimizu

    Nagasaki University, Nagasaki, Japan

    Semiconductor gas sensors including metal oxide-based and polymer-based gas sensors, humidity sensors based on any principles, Sensing principles and mechanisms of semiconductor gas sensors, Nanstructured materials and carbon-based materials for gas sensor applications.

    Email Y. Shimizu

  • M. Tokeshi

    Hokkaido University, Sapporo, Japan

    Microfluidics, Biosensors.

    Email M. Tokeshi

  • U. Weimar

    Eberhard-Karls-Universität Tübingen, Tübingen, Germany

    Chemical sensor systems, data processing of chemical sensor systems, related pattern recognition and multi-component analysis, electronic noses, application of chemical sensor systems. Metal-oxide chemical gas sensors, polymer based chemical gas sensors, innovative gas sensor solutions, sensing principles and mechanisms.

    Email U. Weimar

Editorial Board

  • J.-I. Anzai

    Tohoku University, Sendai, Japan

  • Y. Baba

    Nagoya University, Nagoya, Japan

  • A. D'Amico

    Università di Roma, Rome, Italy

  • R. De Marco

    University of the Sunshine Coast, Sippy Downs, Qld, Australia

  • P.J. French

    Delft University of Technology, Delft, Netherlands

  • J.J. Gooding

    University of New South Wales, Sydney, Australia

  • A. Hierlemann

    Eidgenössische Technische Hochschule (ETH) Zürich, Switzerland

  • J. Homola

    Academy of Sciences of the Czech Republic, Prague, Czech Republic

  • E. Katz

    Clarkson University, Potsdam, NY, USA

  • C.-D. Kohl

    Justus-Liebig-Universität Gießen, Gießen, Germany

  • M. Koudelka-Hep

    Université de Neuchâtel, Neuchâtel, Switzerland

  • L.T. Kubota

    Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil

  • M. Labeau

    LMGP, St Martin d'Heres, France

  • V. Lantto

    University of Oulu, Oulu, Finland

  • T. Laurell

    Lund University, Lund, Sweden

  • I. Lundström

    Linköpings Universitet, Linköping, Sweden

  • A. Manz

    KIST Europe, Saarbrücken, Germany

  • R.A. Matthies

    University of California at Berkeley, CA, USA

  • S. Middelhoek

    Delft University of Technology, Delft, Netherlands

  • K. Persaud

    University of Manchester, Manchester, UK

  • A.J. Ricco

  • A. van den Berg

    University of Twente, Enschede, Netherlands

  • J. Wang

    University of California at San Diego, CA, USA

  • G. M. Whitesides

    Harvard University, Cambridge, MA, USA

  • J. Yoon

    EWHA Womans University, Seoul, The Republic of Korea

  • R.-Q. Yu

    Hunan University, Changsha, China

  • E.T. Zellers

    University of Michigan, Ann Arbor, MI, USA