TABLE OF CONTENTS

- Description p.1
- Impact Factor p.2
- Abstracting and Indexing p.2
- Editorial Board p.2
- Guide for Authors p.18

DESCRIPTION

Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.

NEW! Neurocomputing's Software Track allows you to expose your complete Software work to the community through a novel Publication format: the Original Software Publication

Overview:

Neurocomputing welcomes theoretical contributions aimed at winning further understanding of neural networks and learning systems, including, but not restricted to, architectures, learning methods, analysis of network dynamics, theories of learning, self-organization, biological neural network modelling, sensorimotor transformations and interdisciplinary topics with artificial intelligence, artificial life, cognitive science, computational learning theory, fuzzy logic, genetic algorithms, information theory, machine learning, neurobiology and pattern recognition.

Neurocomputing covers practical aspects with contributions on advances in hardware and software development environments for neurocomputing, including, but not restricted to, simulation software environments, emulation hardware architectures, models of concurrent computation, neurocomputers, and neurochips (digital, analog, optical, and biodevices).

Neurocomputing reports on applications in different fields, including, but not restricted to, signal processing, speech processing, image processing, computer vision, control, robotics, optimization, scheduling, resource allocation and financial forecasting.

Types of publications:

Neurocomputing publishes reviews of literature about neurocomputing and affine fields.

Neurocomputing reports on meetings, including, but not restricted to, conferences, workshops and seminars.

NEW! The Neurocomputing Software Track
Neurocomputing Software Track publishes a new format, the Original Software Publication (OSP) to disseminate exiting and useful software in the areas of neural networks and learning systems, including, but not restricted to, architectures, learning methods, analysis of network dynamics, theories of learning, self-organization, biological neural network modelling, sensorimotor transformations and interdisciplinary topics with artificial intelligence, artificial life, cognitive science, computational learning theory, fuzzy logic, genetic algorithms, information theory, machine learning, neurobiology and pattern recognition. We encourage high-quality original software submissions which contain non-trivial contributions in the above areas related to the implementations of algorithms, toolboxes, and real systems. The software must adhere to a recognized legal license, such as OSI approved licenses.

Importantly, the software will be a full peer reviewed publication that is able to capture your software updates once they are released. To fully acknowledge the author’s/developers work your software will be fully citable as an Original Software Publication, archived and indexed and available as a complete online "body of work" for other researchers and practitioners to discover.

See the detailed Submission instructions, and more information about the process for academically publishing your Software: here

IMPACT FACTOR

2022: 6.000 © Clarivate Analytics Journal Citation Reports 2023

ABSTRACTING AND INDEXING

Abstracts in Human-Computer Interaction
AI Robotics Abstracts
Computer Abstracts
Embase
Engineering Index
Mathematical Reviews
INSPEC
CompuScience
Current Contents - Engineering, Computing & Technology
Cambridge Scientific Abstracts
Current Contents
Neuroscience Citation Index
Research Alert
Web of Science
Zentralblatt MATH
Scopus
Computer Literature Index
PsycINFO

EDITORIAL BOARD

Managing Editor-in-Chief

Zidong Wang, Brunel University London, Department of Computer Science, Kingston Lane, UB8 3PH, Uxbridge, Middlesex, United Kingdom, Fax: +44/1895 251686

Fields of specialization: Intelligent data analysis (bioinformatics, neural networks, etc.), signal processing (filter designs, etc.), real-time systems (control of nonlinear and multi-dimensional systems)

Associate Editors-in-Chief

Machine Learning and Deep Learning (ML)

Javier Andreu-Perez, University of Essex School of Computer Science and Electronic Engineering, Wivenhoe Park, CO4 3SQ, Colchester, United Kingdom
Data stream and online learning, unsupervised machine learning, collaborative filters, fuzzy sets and systems. Applications, neural imaging, brain computer interfaces, computational neuroscience, internet-of-things, body sensors, wearable sensing, physical activity recognition.

Multimedia and Natural Language Processing (M & NLP)

Giuseppe Fenza, University of Salerno, Department of Business Sciences Management & Innovation Systems, 84084, Fisciano, Italy
Semantic Web, Text and data mining, Social media analytics, Big data paradigms, architectures, and technologies, Machine and deep learning, Stream processing, Explainable Artificial Intelligence, Open Source Intelligence

Computer vision (CV)

Jungong Han, Aberystwyth University, Department of Computer Science, Aberystwyth, SY23 3DB, Aberystwyth, United Kingdom
Artificial intelligence, Image processing

Neural Networks (NN)

Alexandros Iosifidis, Aarhus University, Department of Electrical and Computer Engineering, Aarhus, Denmark
Subspace learning, Multi/cross-view/modal subspace learning, Kernel-based learning, Class-specific learning, Neural networks architecture learning, Graph embedding

Data Analytics (DA)

Leandro L. Minku, University of Birmingham School of Computer Science, Edgbaston, B15 2TT, Birmingham, United Kingdom
Data stream learning and mining, Concept drift, Class imbalance learning, Ensembles of learning machines, Online learning

Neuron Dynamics and Network Analysis (NetDynamics)

Qinglai Wei, Chinese Academy of Sciences Institute of Automation, P.O. Box 2728, 100080, Beijing, China
Theoretical contributions, learning methods, theories of learning, fuzzy logic, computational learning theory, machine learning, stability analysis of neural networks, learning systems for control, optimal control, Practical aspects, simulation software environments, Applications, control, robotics, optimization, scheduling

Advisory Editorial Board

Qi He, LinkedIn Corp, 94043-4655, Mountain View, California, United States of America
Steven Hoi, Singapore Management University, 188065, Singapore, Singapore
Yoan Miche, Nokia Bell Labs Espoo, Karaportti 3, FI-02610, Espoo, Finland
• Machine Learning, • Anomaly Detection, • Clustering, • Neural Networks, • Extreme Learning Machine, • Steganography, • Steganalysis, • Network Security, • Computer Security

Editorial Board (Software Section)

Bin Li, Wuhan University, Department of Finance, Wuhan, China
Empirical asset pricing, Machine learning, Financial technologies, Investments, Computational finance
Wei Liu, Tencent AI Lab Beijing, Beijing, China
• Machine learning, • big data analytics, • artificial intelligence, • computer vision, • pattern recognition, • multimedia information processing, optimization, special interests in • large-scale unsupervised/supervised/active learning, • hashing, • similarity/metric learning, • sparse and robust learning, • linear/nonlinear dimensionality reduction, • probabilistic and computational graphical models, • learning to rank, • social network mining, • mobile image search, • image/video search, • image/video classification, • image/video super-resolution, • face verification and recognition, • time series modeling and forecasting.
David Lo, Singapore Management University, 188065, Singapore, Singapore
Software engineering, Specification mining from software systems, Software program analysis, Reverse engineering, Software maintenance & reliability, Automated debugging and bug finding, Data mining, Pattern mining & social network mining
Shaowei Wang, University of Manitoba, Winnipeg, R3T 2N2, Manitoba, Canada
Software analytics, Software debugging, Software repository mining, Software security, AIOps & DevOps, Software maintenance and testing, Machine learning for software engineering, Data analytics
Jia Wu, Macquarie University, Department of Computing, Building E6A, Sydney, 2109, Australia
Brain-inspired intelligent computing, Graph mining, Neural networks, Computational intelligence
Lei Zhang, Microsoft Corp, 98073, Redmond, Washington, United States of America
Computer vision, Multimedia, Information retrieval
Jianke Zhu, Zhejiang University, Hangzhou, China
Computer vision, Multimedia

Editorial Board (Regular Section)

Saeed Anwar, Australian National University, Canberra, Australia
Image restoration, deblurring, super-resolution, denoising, colorization, DeRaining, underwater image enhancement, and related fields, 3D vision, point cloud's segmentation, classification, completion, detection, upsampling, and RGB &, RGBD saliency detection, skeleton action recognition

Dragana Bajovic, University of Novi Sad, Novi Sad, Serbia
Federated learning (algorithms, applications, convergence/performance analyses), Distributed machine learning, Distributed optimization, Distributed inference, Distributed learning/inference/optimization over random systems/random topologies

Yukun Bao, Huazhong University of Science and Technology, Wuhan, Hubei, China
Predictive Analytics with Computational Intelligence, Time Series Modeling and Forecasting, Machine Learning

Monica Bianchini, University of Siena, Siena, Italy
Machine learning (with a particular emphasis on theoretical aspects of learning in neural networks), Optimization, approximation theory, pattern recognition, and numerical methods for nonlinear systems and odes, especially with respect to neural architectures for processing non-standard data (structured data, trees, graphs)

Simone Bonechi, University of Siena, Siena, Italy
Computer Science, Deep Learning, Convolutional Neural Networks, Image Processing, Medical Image Analysis

Jiajun Bu, Zhejiang University, Hangzhou, China
Machine Learning, Big Data Analytics, Social Network Mining, Computer Vision, Wireless sensor networks

Hao CHEN, The Hong Kong University of Science and Technology, Hong Kong, Hong Kong
Deep learning, Medical Image Analysis, Image Segmentation, Trustworthy AI, Label-efficient Learning, Computer-aided diagnosis,

Erik Cambria, Nanyang Technological University School of Computer Science and Engineering, Singapore, Singapore
Sentiment analysis, Affective computing, Extreme learning machines

Jie Cao, Nanjing University of Finance and Economics, Nanjing, China
Data mining &, business intelligence, Statistical learning &, machine learning, Social computing & big data computing

Jiujun Bu, Zhejiang University, Hangzhou, China
Machine learning, neural networks, and intelligent signal processing, Pattern recognition, Compressed sensing, Medical data learning, Extreme learning machine (ELM),

Xianbin Cao, Beihang University, Beijing, China
Computer vision and image processing, Machine learning, Computation intelligence, Optimization

Zehong Cao, University of South Australia, Adelaide, Australia
Neural computation, Computational neuroscience, Brain-computer interface, EEG/ fNIR/fMRI signal processing, Healthcare/clinical applications

Danilo Cavaliere, University of Salerno, Fisciano, Italy
Knowledge-based systems, Soft Computing, Fuzzy logic, Intelligent agents, Data Mining, Remote Sensing, Sentiment Analysis

Faicel Chamroukhi, IRT SystemX, Palaiseau, France
Mixture Models, Model-Based Clustering, Mixtures of Experts, Expectation-Maximization algorithms, Statistical Learning, Functional Data Analysis, High-Dimensional Statistics, Time-Series Clustering, Generative Latent Variable Models, Variational Auto-Encoders,

Jingjing Chen, Fudan University, Shanghai, China
Video content recognition (feature extraction, deep learning approaches, etc.), Video summarization, Image classification/retrieval, Image/video copy detection, Image/video benchmark datasets,

Mou Chen, Nanjing University of Aeronautics and Astronautics, Nanjing, China
Nonlinear system control, Adaptive neural control and application, flight control and robotics,

Zhenghua Chen, A*STAR Research Entities, Singapore, Singapore
Sensory data analytics, Machine learning, Deep learning, Transfer learning,

Jun Cheng, Chinese Academy of Sciences Shenzhen Institutes of Advanced Technology, Shenzhen, China
• object recognition, • human action recognition, • human computer interaction, • active vision, • intelligent robot

Long Cheng, Chinese Academy of Sciences Institute of Automation, Beijing, China
The stability analysis of recurrent neural networks, Neural network methods for solving optimization problems, Neural-network based adaptive control and decision making,

Yongqiang Cheng, University of Hull, Hull, United Kingdom
Artificial intelligence, machine learning, medical image processing, recurrent neural network, adversarial learning, reinforcement learning and graph learning, control theory and applications, robotics and autonomous navigation, time series signal filtering and processing, smart systems and digital health, wireless sensor networks, data fusion/consensus.

Yuhua Cheng, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
Artificial intelligence Analysis of network dynamics Computational neuroscience Control Information theory Machine learning Optimization Signal processing

Yiu-ming Cheung, Hong Kong Baptist University, Department of Computer Science, Hong Kong, Hong Kong
Clustering Analysis, Feature Weighting, Imbalanced Data Learning, Neural Networks, Object Tracking, Face Recognition, Watermarking, Multi-objective Optimization

Yansong Chua, Huawei, Central Research Institute, Data Center Technology Lab, Shenzhen, Guangdong, China
Neuromorphic computing, spiking neural networks, brain inspired computing, computational neuroscience, brain simulation

Gianluigi Ciocca, University of Milan-Bicocca, Milano, Italy
Computer Vision, Deep Learning, Object recognition (Attention models for object detection, Object attributes), Action and Behavior Recognition (2D action recognition, 3D action recognition), Video analysis and Understanding (Video segmentation, Video summarization, Video representations), Scene Analysis and Understanding (Semantic segmentation, Multi-task learning), Image and Video Retrieval (Cross-modal retrieval, Image matching, Similarity search, Video retrieval), Image Classification (Unsupervised image classification, Hierarchical image classification, Fine-grained image classification), Datasets and evaluation (Synthetic datasets)

Carmela Comito, National Research Council of Italy, Naples, Italy
Artificial Intelligence, Data Mining, Information Retrieval, Neural Networks, Machine Learning, Mobility mining, Social Networks analysis and mining, Big data analytics, Health Informatics, Deep learning and machine learning, Intelligent forecasting, Intelligent diagnostics, Pattern recognition, Prediction Models, Recent research activities, Event detection from tweet streams, Trajectory pattern mining, Word Embedding based Clustering to Detect Topics in Social Media, Next-place prediction from Social Networks, Recommendation systems, Health-related topic identification and sentiment analysis from Social Networks, Influenza Forecasting with Web-Based Social Data, Diagnosis prediction based on patient symptoms similarity using word embedding, Clinical decision support for automatic disease diagnoses, Fake news detection, Misinformation Analysis

Runmin Cong, Beijing Jiaotong University, Beijing, China
Computer Vision and Artificial Intelligence, Attention Perception and Salience Computation, Interpretation and Analysis of Remote Sensing Image, Visual Content Enhancement in An Open Environment, Multimedia Big Data Understanding and Application

Vincenzo Conti, Kore University of Enna, Enna, Italy

Claudio Cusano, University of Pavia, Department of Electrical, Computer and Biomedical Engineering, Pavia, Italy
Computer vision, Pattern recognition, Machine learning, Computational photography

Jianhua Dai, Hunan Normal University, Changsha, China
Machine learning, Recurrent neural networks, Big data analytics, fuzzy rough set, Fuzzy clustering, Granular computing

Swagatam Das, Indian Statistical Institute Electronics and Communication Sciences Unit, Kolkata, India
Swarm and evolutionary computing techniques, Evolutionary clustering and feature selection, Dynamical systems and chaos, Interplay of machine learning techniques with evolutionary optimization

Cheng Deng, Xidian University School of Mechano-Electronic Engineering, Xian, China
Computer vision, action recognition, image classification (multi-class and multi-label), Deep learning and its applications, Machine learning, multi-view learning and multi-task learning, Information hiding, robust watermarking, reversible watermarking, and image forensics

Zhaozhong Deng, Jiangnan University, Wuxi, Jiangsu, China
Fuzzy neural networks and fuzzy logic systems, Fuzzy clustering, Transfer learning, Feature extraction

Giovanna Maria Dimitri, University of Siena, Siena, Italy
Deep Learning, Machine Learning, Computer Vision

Derui Ding, Swinburne University of Technology School of Software and Electrical Engineering, Melbourne, Victoria, Australia

Weiping Ding, Nantong University, School of Information Science and Technology, Nantong, China
Neural networks, Machine learning for human-centred computing, Co-evolutionary algorithm, Quantum-inspired evolutionary algorithm, Rough set theory, Big data optimization and analysis, Medical images analysis,

Juan P. Dominguez-Morales, University of Seville, Department of Architecture and Computer Technology, Sevilla, Spain
Spiking neural networks, Audio processing, Neuromorphic engineering, Machine learning and deep learning 7Bio-inspired systems, eHealth applications,

Hongli Dong, Northeast Petroleum University, Daqing, China
Network based control systems, Robust control and filtering, Fault detection and diagnosis, Distributed filtering over sensor networks, Stochastic nonlinear systems,

Yongsheng Dong, Henan University of Technology, School of Information Engineering, Luoyang, China
• Generative Adversarial Networks • Meta Learning • Statistical Learning • Clustering • Ensemble Learning

Bo Du, Wuhan University School of Computer Science, Wuhan, China
Hyperspectral image processing, Hyperspectral target detection, Hyperspectral classification, Remote sensing image processing, Object detection from high resolution remote sensing image, Scene analysis from high resolution remote sensing image, Remote sensing image classification, Biomedical image processing, Biomedical image segmentation video data analysis, Video tracking, Deep learning, Deep learning for visual data, Deep learning for biomedical data, Deep learning for remote sensing data active learning, Active learning for visual data, Transfer learning, Transfer learning for visual data, Transfer learning for remote sensing data, Social networks analysis, Intelligent transport

Shukai Duan, Southwest University, Chongqing, China
(i) neuromorphic architectures, (ii) biological neural network modelling, (iii) emulation hardware architectures of Neurocomputing, (iv) Memristor and memristive systems, (v) circuit design and analysis, vichaos, chaotic neural network.

Witali Dunin-Barkowski, Russian Academy of Sciences, Moskva, Russian Federation
Neuroinformatics and theoretical and experimental biophysics of nervous system, Respiratory pattern generator, cerebellar learning, Purkinje cells, Hebbian learning,

Bin Fan, Chinese Academy of Sciences, Beijing, China
Feature extraction, Feature detection, Feature description, Image matching, Image classification, SLAM, 3D vision, Camera pose estimation, Biologically inspired vision

Leyuan Fang, Hunan University, Changsha, China
• Deep Learning, • Sparse Representation, • Medical Image Restoration, • Medical imaging, • Image segmentation, • Image Classification

Wei Feng, Tianjin University, Tianjin, China
Active robotic vision (camera relocalization, lighting estimation, 3D perception, visual SLAM, change detection); visual object tracking, detection and segmentation (deep learning based tracking & detection, correlation filters, Markov random fields); pattern recognition & learning theory.

Graziella Figueredo, University of Nottingham, Nottingham, United Kingdom
Machine Learning, Pattern Recognition, Big Data, Big Data Streams, Instance Selection, Dynamic Selection of Classifiers, Interdisciplinary topics with AI, Genetic Algorithms, Bio-inspired computation, Artificial Immune Systems,

Mariacristina Gallo, University of Salerno, Fisciano, Italy
Big Data, Soft Computing, Semantic Web, Social Media Analytics, Fuzzy logic, Natural Language Processing, Data & Text Mining,

Chuang Gan, MIT-IBM Watson AI Lab, Cambridge, Massachusetts, United States of America
Action recognition, Action localization, Zero-shot learning, Audio-visual learning, Image/video caption, Visual question answering (VQA),

Chao Gao, Northwestern Polytechnical University, Xian, China
social networks, graph neural network, community detection, human interaction, modeling behavaiors, network clustering, influence maximization, information diffusion, network embedding, agent-based modeling, multi-agent systems

Shenghua Gao, ShanghaiTech University, Shanghai, China
Crowd counting, Video anomaly detection, 360 video understanding, 3D scene reconstruction,

Xinbo Gao, Xidian University, Xian, China
Subspace learning, Cluster analysis, Image quality assessment, Pattern recognition, Watermarking,

Vicente García Díaz, University of Oviedo, Oviedo, Spain
NLP, Computer human dialogue systems, Question answering, Biomedical text mining, Information extraction techniques, Natural language understanding, Summarization, Uncertainty in AI, Self-learning systems, Knowledge representation, Knowledge reasoning,

Giorgio Stefano Gnecco, IMT School for Advanced Studies, AXES Research Unit, Lucca, Italy
Supervised learning, Recommendation systems, Neural networks, Infinite dimensional optimization, Statistical learning theory, Mathematics of machine learning,

Manuel Graña, University of the Basque Country, Faculty of Computer Science, San Sebastian, Spain
Reinforcement learning, Multi agent reinforcement learning, Hyperspectral image processing and analysis, Medical image processing and analysis (general), Brain image processing, Brain networks, Neurodegenerative disease biomarkers from images, Magnetic resonance imaging segmentation and analysis, Computer aided diagnosis, Lattice computing, Lattice theory based algorithms, Self-organizing maps, Artificial neural networks, Face recognition, Multi-robot systems, Social computing, Subconscious social intelligence,

Xiaowei Gu, University of Kent, Canterbury, United Kingdom
Computer vision, Image classification, Semi-supervised learning, Fuzzy learning,

Ziyu Guan, Northwest University, Xian, China
Manifold learning, Deep learning, Social media and social networks, Recommender systems

Jie Gui, Southeast University, Nanjing, China
Generative adversarial networks, Self-supervised learning, Hashing, Dimensionality reduction, Sparse learning, Semi-supervised learning, Multi-view learning, Classification,

Rodrigo Guido, São Paulo State University Institute of Biosciences Languages and Exact Sciences, SAO JOSE DO RIO PRETO, Brazil
wavelets, digital signal processing, electronics

Frederico Guimarães, Federal University of Minas Gerais, Department of Electrical Engineering, Belo Horizonte, Brazil
Artificial intelligence, Deep learning, Machine learning, Fuzzy systems, Genetic algorithms, Optimization, Time series forecasting,

Petr Hajek, University of Pardubice, Pardubice, Czechia
Deep learning, Decision support system, Knowledge-based system, Fuzzy system, Sentiment analysis, Financial market, Time series forecasting,

Barbara Hammer, Bielefeld University, Bielefeld, Germany
SOMs, LVQ, Learning theory, Bioinformatics, Recurrent neural networks,

Junwei Han, Northwestern Polytechnical University, Xian, China

Shengfeng He, South China University of Technology School of Computer Science and Engineering, Guangzhou, China
Computer vision, Image processing, Deep learning, Computer graphics,

Wei He, University of Science and Technology Beijing, Beijing, China
Neural Networks, Adaptive Control, Nonlinear System, Robot, Distributed Parameter System

Romain Herault, Normandie Univ, UniRouen, UniHavre, INSA Rouen, LITIS, Saint-Étienne-du-Rouvray, France
Dimension reduction, Kernel method, Deep learning, Transfert learning, Machine learning applied to signal processing

Xia Hong, University of Reading, Reading, United Kingdom
Neural networks and learning systems, Artificial intelligence, Pattern recognition, Information theory, Machine learning, Signal processing, Control, Optimization, Forecasting,

Chenping Hou, National University of Defense Technology, Changsha, China
Dimensionality reduction/manifold learning Feature selection Clustering algorithm Multi-view learning Multi-label learning Roubust learning

Bin Hu, Huazhong University of Science and Technology, Wuhan, Hubei, China
Neural network, Artificial intelligence, Complex network and spatiotemporal dynamics, Hybrid dynamical system

Bingliang Hu, Chinese Academy of Sciences, Beijing, China
Hyperspectral imaging and higorder data processing

Jun Hu, Harbin University of Science and Technology, Haerbin, China
Biological neural network modeling, Analysis of the network dynamics, Computational learning theory, Information theory, Signal processing, Network-based control, Robotics and optimization

Ting Hu, Queen's University, Kingston, Ontario, Canada
Evolutionary computing, Interpretable Machine Learning, Explainable Artificial Intelligence, Complex Networks, Bioinformatics, Computational Biology,

Guang Bin Huang, Nanyang Technological University, Singapore, Singapore
ELM, RBF, MLPs, SVM
He Huang, Soochow University, Suzhou, China

Kaizhu Huang, Xi’an Jiaotong-Liverpool University, Department of Electrical and Electronic Engineering, Suzhou, China
Pattern recognition, Machine learning, Character recognition, Text detection, Deep learning

Qinghua Huang, Northwestern Polytechnical University, Xian, China
Medical image analysis (based on machine learning), Computer-aided diagnosis,

Adriano Lorena I. de Oliveira, Federal University of Pernambuco, RECIFE, Brazil
Data streams, Concept drift, Ensembles of classifiers, Time series forecasting, Deep learning, Swarm intelligence algorithms, Financial forecasting, Software effort estimation, Handwritten signature verification,

Bin Jiang, Nanjing University of Aeronautics and Astronautics College of Automation Engineering, Nanjing, China
Intelligent fault diagnosis and fault tolerant control, Neural network, Kalman filter, Data-driven method and their applications in aircraft, High-speed trains,

Zhaojie Ju, University of Portsmouth, Portsmouth, United Kingdom
Machine learning and pattern recognition, Multimodal human motion analysis, Dexterous multifingered robotic and prosthetic hand control, Humanoid robot motion learning and planning, Intelligent human-robot/computer interaction

Hamid Reza Karimi, Polytechnic of Milan, Milano, Italy
Theoretical contributions of neural/wavelet networks, Fuzzy logic, Genetic algorithms, Analysis of network dynamics, Biological neural network modeling, Applications in control, robotics, optimization,

Farrukh Aslam Khan, King Saud University, Riyadh, Saudi Arabia
Machine & deep learning, Cyber security, Computer networks, Recommender systems,

Fouad Khelifi, Northumbria University, Newcastle Upon Tyne, United Kingdom
Video analytics, Computer vision, Image hiding,

Abbas Khosravi, Deakin University, Burwood, Victoria, Australia
Deep learning, Trusted AI, Uncertainty quantification, Neural architecture search, Evolutionary algorithms, Explainable AI,

Bahare Kiumarsi, Michigan State University, East Lansing, Michigan, United States of America
Reinforcement learning for control, Cooperative control of multi-agent systems, Neural network for control, Approximate dynamic programming, Data-driven learning for control

Hak-Keung Lam, King's College London, London, United Kingdom
Intelligent control, Fuzzy control,

Jianjun Lei, Tianjin University, Tianjin, China
Deep learning, Sketch-based image retrieval, Saliency detection, Pedestrian detection, Video coding, 3D image/video processing and quality assessment, Image super-resolution, Person re-identification,

Zhen Lei, Chinese Academy of Sciences, Beijing, China
Face related analysis, Detection and recognition, Biometrics object detection and recognition, Object tracking

Bing Li, Chinese Academy of Sciences, Beijing, China
Multi-Instance Learning, Visual Saliency, Image/video Understanding, Color Vision, Sparse Coding, Intelligent Vehicle System

Chongyi Li, Nanyang Technological University, Singapore, Singapore
Computer vision, Deep learning, Image restoration and enhancement, Video restoration and enhancement,

Hongsheng Li, The Chinese University of Hong Kong, Hong Kong, China
Computer vision, Machine learning, Deep learning, GAN, Medical image analysis,

Kang Li, Queen's University Belfast, Belfast, United Kingdom
Construction and learning methods for neural networks, especially RBF, MLP, and Kernel methods, and neural network modeling and identification of nonlinear systems

Piji Li, Tencent AI Lab, Shenzhen, China
Natural Language Processing, Text Mining, Dialogue systems, Language generation, Summarization,

Xiaoli Li, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing, China
Intelligent monitoring system, Neural signal processing (neurocomputing), Neural engineering (design of EEG device, FNIRS device, neurofeedback, tDCS, TMS, focus ultrasound stimulation), Engineering for brain disorder, epilepsy, autism, ADHD, AD and disorder of consciousness,

Yongmin Li, Brunel University London, London, United Kingdom

AUTHOR INFORMATION PACK 6 Oct 2023 www.elsevier.com/locate/neucom
• Computer vision, • image processing, • video analysis, • medical imaging, • bio-imaging, • machine learning, • pattern recognition, • automatic control • nonlinear filtering

Yunpeng Li, University of Surrey, Guildford, United Kingdom
Bayesian deep learning, Statistical machine learning, High-dimensional data analysis (time-series prediction), Bayesian methods/causal inference/explainable AI, Generative adversarial networks,
Zhifeng Li, Tencent AI Lab Beijing, Beijing, China
Deep Learning, Computer Vision and Pattern Recognition, Face Detection and Analysis
Jinling Liang, Southeast University School of Mathematics, Nanjing, China
Neural networks, Two-dimensional systems, Boolean networks, Complex networks, Stochastic analysis.

Chenghua Lin, The University of Sheffield, Sheffield, United Kingdom
Natural language processing, Natural language generation, Machine learning, Sentiment analysis, Topic modelling, Text mining, Summarization, Dialogue systems
Chenchen Liu, Clarkson University, Potsdam, New York, United States of America
High performance computing system neuromorphic computing and system security, Hardware/software co-design for dnn acceleration mobile and IoT system security enhancement novel nonvolatile memory, Digital circuit, CMOS VLSI, FPGA design
Fiona Yan Liu, The Hong Kong Polytechnic University, Hong Kong, Hong Kong
Brain imaging, EEG data analysis, EEG data generation, EEG data editing, EEG data augmentation, Multimodal data analysis, incomplete data analysis, imbalance data analysis, Affective computing, music emotion analysis, music therapy for anxiety, music therapy for depression, Developmental robotics, implicit learning, diffusion model, developmental chatbot, Computer music, algorithmic composition, machine composition, music style transfer, artificial intelligence art,
Jun Liu, Singapore University of Technology and Design, Singapore, Singapore
Computer Vision, Video Analysis, Action Recognition, Pose Estimation,
Junxue Liu, Ulster University School of Computing Engineering and Intelligent Systems, Magee, United Kingdom
Spiking neural networks, Biological neural network modelling, Learning algorithms, Hardware architectures and neuromorphic systems, Neural network applications
Qi Liu, University of Science and Technology of China, Hefei, Anhui, China
Data Science, Data Mining, Machine Learning, Recommender Systems, Social Network Analysis, Intelligent Education, Cognitive, Diagnosis, Knowledge Tracing, Educational Big Data, Computer-Assisted Testing, Context-aware data mining,
Shenglan Liu, Dalian University of Technology, Dalian, China
• Manifold learning, • Information retrieval, • Multimodal human action learning

Yonghuai Liu, Edge Hill University, Department of Computer Science, Ormskirk, United Kingdom
3D computer vision, Geometric modelling, Feature extraction and matching, Image enhancement, Noise removal, Image processing, Pattern classification and recognition, Data clustering, Video frame analysis and storage, and machine learning

Yurong Liu, Yangzhou University, Yangzhou, China
Dynamics analysis of all kinds of neural networks, Dynamics analysis of all kinds of complex networks, Control and filtering problems using neural networks, Optimization problems using neural networks,

Zhi-Yong Liu, Chinese Academy of Sciences, Beijing, China
Combinatorial optimization, graph matching and energy minimization in machine learning and computer vision, Subspace model, Independent component analysis (ICA), Principal component analysis (PCA), Clustering and manifold learning,

Zhiyuan Liu, Tsinghua University, Beijing, China
Knowledge graph, Natural language processing, Representation learning, Neural networks,
Andrea Loddo, University of Cagliari, Cagliari, Italy
Computer Vision, Machine Learning, Deep Learning, Image Processing, Image Segmentation, Image Classification, Image Retrieval, Object Detection, Medical Image Analysis, Microscopic Image Analysis, Blood Cell Image Analysis, Re-Id

Ana Carolina Lorena, Technological Institute of Aviation, SAO JOSE DOS CAMPOS, Brazil
Machine Learning, Meta-learning, Classification, Regression, Clustering,

Shijian Lu, Nanyang Technological University College of Engineering, Singapore, Singapore
OCR, object detection, object recognition, scene text detection and recognition, Image synthesis, GAN based image composition, Image analysis, document image analysis and recognition, Aerial image analytics, object detection and scene segmentation in satellite images
Wei Lu, Singapore University of Technology and Design, Singapore, Singapore
NLP: natural language semantics (in a broad sense) and fundamental problems related to structured prediction
Xuequan Lu, Deakin University School of Information Technology - Burwood Campus, Burwood, Australia
Visual Data Computing, Geometry processing/analysis, Computer graphics, VR/AR, Animation, Face computing, Interdisciplinary digital manufacturing and Health computing,

Zhenyu Lu, Nanjing University of Information Science and Technology, Nanjing, China
Artificial intelligence, Intelligent control, Evolutionary Learning, Metric Learning, Multimodal Learning

Biao Luo, Central South University School of Information Science and Engineering, Changsha, China
• Reinforcement Learning, • Adaptive Dynamic Programming, • Data-based Control, • Distributed Parameters Systems, • Neural Network Control

Xin Luo, Chinese Academy of Sciences Chongqing Institute of Green and Intelligent Technology, Chongqing, China
Neural Networks, Recommender Systems, Regularization, Latent Factor Analysis, Sparse Matrix Analysis, Sparse Representation, Tensor Factorization, Clustering

Jiayi Ma, Wuhan University, Wuhan, China

Lifeng Ma, Nanjing University of Science and Technology, Nanjing, China
Stochastic nonlinear systems, Complex networks, Sensor networks, Multi-agent systems, Nonlinear control, Signal processing,

Zhanyu Ma, Beijing University of Posts and Telecommunications, Beijing, China
Pattern recognition, Machine learning, (non-Gaussian) statistical modeling, Big data analysis, Speech and image processing, Computer vision, Bioinformatics

Danilo Maccio, Consiglio Nazionale delle Ricerche (CNR),
Approximate dynamic programming, Reinforcement learning, Deterministic learning, Extreme learning machines, Data-driven learning, Ensemble learning,

Angshul Majumdar, Indraprastha Institute of Information Technology Delhi, New Delhi, India
Smart grid, Dictionary learning, Inverse problems, Compressed sensing, Recommender systems/collaborative filtering

Gaofeng Meng, Chinese Academy of Sciences, Beijing, China
Image enhancement, including image dehazing, image super-resolution, hdr image tone-mapping,
Image restoration, including image deblurring, image decomposition, image reconstruction,
Image quality assessment, Document image analysis and recognition, including document image rectification, illumination estimation,

Seyedali Mirjalili, Torrens University Australia, Centre for Artificial Intelligence Research and Optimization, Fortitude Valley, Australia
Computational intelligence, Neural network, Evolutionary algorithm, Optimization, Robust optimization, Engineering optimization,

Tingting Mu, University of Liverpool, Liverpool, United Kingdom
Machine learning, Pattern recognition, Genetic algorithms, Computer vision, Biological neural network modeling,

Yadong Mu, Peking University Wangxuan Institute of Computer Technology, Beijing, China
Video classification, Action recognition, Human pose estimation, Image hashing,

Anirbit Mukherjee, The University of Manchester, Manchester, United Kingdom
Deep learning theory, Deep neural networks, Sparse coding and autoencoders, Physics informed machine learning, Deep operator networks, Stochastic optimization theory,

Jing Na, Kunming University of Science and Technology, Kunming, China
Neural network based observer design, System identification with neural network, Adaptive control with neural network, Adaptive parameter estimation, Approximate/adaptive dynamic programming (ADP), Neural based optimization and application, nonlinear control and application (including robotics and servo mechanisms), Active suspension and application, Modeling and control for vehicle systems (including engines)

Paolo Napoletano, University of Milan-Bicocca, Department of Informatics Systems and Communication, Milano, Italy
Signal, image and video analysis and understanding, multimedia information processing and management and machine learning for multi-modal data classification and understanding.

Nicolò Navarin, University of Padua, Padova, Italy
Machine Learning on structured data, Kernel methods, Artificial Neural Networks, Statistical learning theory, Online learning, Machine learning for Bioinformatics, Business process mining, Remote sensing,

Robert Newcomb, University of Maryland, College Park, Maryland, United States of America
Analog VLSI, Bio-medical engineering, Circuit and systems theory, Micro-systems, Biologically motivated neural networks, Robotics

Thien H. Nguyen, University of Oregon, Department of Computer and Information Science, Eugene, Oregon, United States of America
Information Extraction, Natural Language Processing, Deep Learning, Machine Learning, Graph Representation Learning

Yugang Niu, East China University of Science and Technology, Shanghai, China
Estimation and filtering; Neural networks; Stochastic systems; Networked control systems

Luca Oneto, University of Genoa, Department of Computer Science Bioengineering Robotics and Systems Engineering, Genova, Italy
Classification, Regression, Model selection, Error estimation, Learning theory, Statistical learning, Kernel methods, Multitask learning, Fairness, Differential privacy, Railway transportation systems, Naval transportation systems, Human activity recognition, Extreme learning machines, Random forests, Ensemble methods

Felipe Orihuela-Espina, University of Birmingham, Birmingham, United Kingdom
fNIRS Neuroimaging, Optical neuroimaging, Diffuse Optical Imaging, Data analysis and interpretation, Topological and, Manifold based analysis, (classic) Statistical analysis, Causal analysis, Knowledge representation,

Weike Pan, Shenzhen University, Shenzhen, China
recommend systems, collaborative filtering, personalization, recommendation, transfer learning, deep learning, domain adaptation, matrix factorization

Nikolaos Passalis, Aristotle University of Thessaloniki School of Informatics, Thessaloniki, Greece
Lightweight deep learning, Neural network distillation, Knowledge transfer, Representation learning, Deep learning, Deep reinforcement learning, Information retrieval, Neuromorphic photonics,

Fernando Perez-Pena, University of Cadiz, Cadiz, Spain
Motor control, Neuromorphic engineering, Spiking neural networks, Neurorobotics, FPGA, Central Pattern Generator, Neuromorphic computation,

Caroline Petitjean, Rouen University, Mont St Aignan, France
Machine learning, Deep learning and their applications to computer vision, Medical image analysis (image segmentation, classification, detection, prediction modeling),

Soujanya Poria, Singapore University of Technology and Design, Singapore, Singapore
Natural language processing, Emotion recognition in conversations (ERC), Infusing commonsense into deep learning systems, Question answering using knowledge bases and commonsense, Argumentation mining, Sarcasm detection, Sentiment analysis, Personalized, empathetic dialogue generation, Multimodal machine learning,

Jiahu Qin, University of Science and Technology of China, Hefei, Anhui, China
Coordination and cooperation in multi-agent systems, Complex dynamical networks (with application to social/biological networks, power systems, and autonomous robots), Networked control systems,

Tao Qin, Microsoft Research Asia, Beijing, China
Deep learning, Neural machine translation, Language modeling, Text summarization, Sentiment analysis, Text to speech synthesis, Machine reading comprehension

Jianbin Qiu, Harbin Institute of Technology, Haerbin, China
Intelligent and hybrid control and systems, Fuzzy systems and optimization, Networked control systems, Signal processing,

Roozbeh Razavi-Far, University of Windsor, Windsor, Ontario, Canada
Machine Learning, Data Science, Big Data Analytics, Intelligent Systems, Cyber-Physical Systems, and Cybersecurity

Luca Romeo, University of Macerata, Macerata, Italy
sparse learning, kernel methods, multi-task learning, multiple instance learning, sequential learning, affective computing, electronic health record

Sriparna Sahais, Indian Institute of Technology Patna, Patna, India
Machine Learning, Deep Learning, Natural Language Processing, Text Mining, Bioinformatics, Multiobjective optimization, Biomedical information extraction,

Rathinasamy Sakthivel, Bharathiar University, Coimbatore, India
Neural networks, Stability, Switching systems, Control and systems theory, Soft computing techniques

Marcello Sanguineti, University of Genoa, Department of Computer Science Bioengineering Robotics and Systems Engineering, Genova, Italy
Foundations of neural computation, Learning, Analysis of algorithms, Applications, optimization over graphs and networks, infinite-dimensional programming

Mika Sato-Ilic, University of Tsukuba, Tsukuba, Japan
Clustering, Data Analysis, Machine Learning, Principal component analysis

Caifeng Shan, Shandong University of Science and Technology, Qingdao, China
Computer Vision, Pattern Recognition, Medical Image Analysis, Machine Learning

Bo Shen, University of Duisburg-Essen, Duisburg, Germany
Analysis of network dynamics, Biomedical signal processing, Neural networks, Theories of learning, Machine learning, Computational learning theory, Fuzzy logic, Artificial intelligence, Pattern recognition, Genetic algorithms, Information theory, and applications in fields of signal processing, control and optimization

Liquan Shen, Shanghai University, Shanghai, China
• Image/Video Quality Assessment, • Video Coding, • 3DTV, • Saliency Model

Wei Shen, Johns Hopkins University, Baltimore, Maryland, United States of America
• Deep learning • Computer vision • Biomedical image analysis, • image recognition, • object detection, • semantic segmentation, • edge detection • random forests

Weiguo Sheng, Hangzhou Normal University, Hangzhou, China
Evolutionary computation (including algorithm model, design, analysis and applications), Unsupervised learning (data clustering, clustering model, clustering criteria, similarity measure etc.)

Shohei Shimizu, Shiga University, Faculty of Data Science Graduate School of Data Science, Hikone, Japan
Fields of specialization - Causal discovery, Causal structure learning, Machine learning,

Rodrigo G. F. Soares, Federal Rural University of Pernambuco, RECIFE, Brazil
Machine Learning, Ensemble learning, Semi-supervised learning, Stream learning, Neural Networks, Clustering, Evolutionary computation

Dongjin Song, University of Connecticut, Storrs, Connecticut, United States of America
Machine Learning, Data Mining, Time Series Analysis (e.g., forecasting, classification, anomaly detection, etc.), Graph Mining, Graph Neural Network, Federated Learning

Mingli Song, Zhejiang University Library, Hangzhou, China
Qiankun Song, Chongqing Jiaotong University, Chongqing, China

Ponnuthurai Nagaratnam Suganthan, Qatar University KINDI Center for Computing Research, Doha, Qatar
Randomised feed forward neural nets (rvfl, elm, kernel elm, etc.), Kernel ridge regression, Random forest, Ensemble classifiers, Time series forecasting,

Aixin Sun, Nanyang Technological University, Singapore, Singapore
Text classification, Information retrieval, Information extraction, Named entity recognition and linking

Shiliang Sun, East China Normal University, Shanghai, China
Statistical learning theory, Bayesian nonparametric learning, Variational inference, Support vector machines and kernel methods, Sequential data modeling, Multitask and transfer learning, Semi-supervised and active learning, Multi-view learning,

Yang Tang, East China University of Science and Technology, Shanghai, China
Neural networks, Control, Synchronization, Consensus, Evolutionary algorithms, Complex networks, Optimization, Computational neuroscience, Dynamical systems

Mohammad Tanveer, Indian Institute of Technology Indore, Indore, India
Support vector machines (SVM), Twin SVM, Ensemble learning, Randomized neural networks, Deep learning, Optimization, Neuroimaging,

Zhiqiang Tao, Zhejiang University of Technology, Hangzhou, China
Machine Learning, Data Mining, Computer Vision, Graph Neural Networks, Unsupervised Deep Feature Learning, Autoencoders, Ensemble Clustering, Multi-View Learning, Sequence Learning, Auto-ML, Hyperparameter Optimization, Image Segmentation and Clustering, Document Clustering, Video Action Prediction and Grouping, User Modeling,

Yingjie Tian, University of Chinese Academy of Sciences, School of Economics and Management, Haidian, Beijing, China
Machine learning, Support vector machines, Deep learning, Transfer learning, Metric learning, Kernel methods, Pattern recognition, Semi-supervised learning

Radu Timofte, ETH Zurich, Zurich, Switzerland
Learned compression, Visual domain translation, Computational photography, Augmented perception,

Isaac Triguero, University of Nottingham Computational Optimisation and Learning Lab, Nottingham, United Kingdom
Big data, Data reduction, Semi-supervised learning, Imbalanced classification, Citizen science, Astroinformatics, Evolutionary algorithms, Instance selection, Feature selection

Zhaopeng Tu, Tencent AI Lab, Shenzhen, China
Deep learning for natural language processing (NLP): neural machine translation, and Seq2Seq learning for other NLP tasks, such as dialogue and question answering

Kyriakos Vamvoudakis, Georgia Institute of Technology, Atlanta, Georgia, United States of America
Reinforcement learning for control, Cyber-physical systems and security, Control theory, Autonomy

Elena Verdú, International University of Rioja - Logroño Campus, Logroño, Spain
Deep learning for NLP, Cognitive NLP, Learning Analytics, Deep learning for speech processing, Deep learning for Computer vision,

Renato Vimieiro, Federal University of Minas Gerais, BELO HORIZONTE, Minas Gerais, Brazil
Exceptional model mining, Subgroup discovery, Survival/Time-to-event analysis, Text classification, Authorship attribution, Clustering methods, Classification methods, Biodata mining, ,

Chi Man Vong, University of Macau, Taipa, Macao
• Deep Learning Models • Extreme Learning Machines • Support Vector Machines • Random Projection Networks • Board Learning Systems • Neural Networks • Imbalanced Data, Machine Learning, Semantic Segmentation, SLAM, Multi-instance Learning

Ding Wang, Chinese Academy of Sciences, Beijing, China
Training of neural networks , Reinforcement learning, Neural network control, Intelligent control and systems, Optimization and optimal control,

Jie Wang, University of Science and Technology of China, Hefei, Anhui, China
• large-scale optimization, • sparse learning, • stochastic optimization, • deep learning, • natural language processing

Jin-Liang Wang, Tiangong University, Tianjin, China

Li Wang, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
Medical imaging, Image segmentation, Image registration, Cortical surface analysis, Machine learning and their applications on normal early brain development and disorders

Qi Wang, Northwestern Polytechnical University, Xian, China
Computer vision, Pattern recognition, Machine learning methods and their related applications particularly in video surveillance, Intelligent transportation system, Remote sensing and multimedia analysis

Ruili Wang, Massey University - Auckland Campus, Albany, New Zealand
Deep learning and its application in image/video processing and speech processing

Ruiping Wang, Chinese Academy of Sciences, Beijing, China
• face image analysis, • image retrieval, • object recognition, • object detection, • manifold learning, • metric learning, • kernel learning, • deep learning.

Su-Jing Wang, Chinese Academy of Sciences, Beijing, China
Manifold learning, Tensor analysis, Sparse representation, and texture extraction. I am also interested in applying them to recognizing micro-expression, facial expression, face

Suhang Wang, The Pennsylvania State University, University Park, Pennsylvania, United States of America
Network mining, Data mining, Social media mining, Deep generative models, Adversarial machine learning

Wenguan Wang, Zhejiang University, Hangzhou, China
Computer vision and deep learning, Image/video segmentation, salient object detection, object tracking, visual and neural attention, scene parsing, embodied AI

Xiwei Wang, Northeastern Illinois University, Chicago, Illinois, United States of America
Recommender systems, Data privacy, Data mining, and Machine learning

Yan-Wu Wang, Huazhong University of Science and Technology, Wuhan, Hubei, China
Impulsive control, Event-triggering control, Cooperative control, Networked control, Switched system, Multi-agent system, Time-delay system, Neural network, Smart grid, Stability,

Yisen Wang, Peking University, Beijing, China
Adversarial machine learning, Graph learning, Weakly supervised learning, Self-supervised learning,

Zhen Wang, Northwestern Polytechnical University, Xian, China
Image/video retrieval and annotation, Video content analysis, Human action recognition, Facial expression recognition, Multimedia content analysis, Affective computing,

Qingsong Wen, Alibaba Group (U.S.) Inc, DAMO Academy, Bellevue, Washington, United States of America
Time Series Analysis, Anomaly Detection, Business Intelligence, AIOps, Signal Processing

Wujie Wen, Florida International University, Miami, Florida, United States of America
Algorithm/architecture design for brain inspired computing, Energy-efficient deep neural network accelerators in FPGA/ASIC, Neural network security, Neuromorphic computing based on emerging technologies,

Jelmer M. Wolterink, University Twente, Faculty of Electrical Engineering Mathematics and Computer Science, Enschede, Netherlands

Medical image analysis, CT, MRI, Graph neural networks, Geometric deep learning, Generative adversarial networks.

Calvin Wong, The Hong Kong Polytechnic University, Hong Kong, Hong Kong

Learning theories and methods, Neural network modelling, Artificial intelligence, Fuzzy logic, Evolutionary algorithms, Machine learning, Pattern recognition, Feature extraction

Baoyuan Wu, Shenzhen Research Institute of Big Data, China

Adversarial examples, Backdoor learning, Federated learning, Image annotation, Visual relationship generation, Facial emotion recognition, Video object segmentation, Video summarization, Deep model compression, Multi-label learning, Probabilistic graphical models, Integer programming, Large-scale optimization,

Di Wu, Southwest University, Chongqing, China

Machine Learning, Feature Selection, Neural Networks, Graph Computing

Fangxiang Wu, University of Saskatchewan, Saskatoon, Saskatchewan, Canada

Complex network control, Bionetwork analytics, Brain images and brain networks, Machine learning in bioinformatics, Big biological data analytics, and Nonlinear biodynamic analytics.

Min Wu, Institute for Infocomm Research, Singapore, Singapore

Time-series analytics, Time-series representation learning, Transfer learning for time-series, IIoT applications, deep learning for machine fault diagnosis and prognosis, Healthcare applications, deep learning for EEG and ECG data analysis, Graph data analytics, Graph neural networks, Graph contrastive learning, Graph-based methods for bioinformatics,

Q. M. Jonathan Wu, University of Windsor, Windsor, Ontario, Canada

• Computer vision, • image processing, • neural networks, • deep learning, • pattern recognition

Wei Wu, Chinese Academy of Sciences Institute of Automation, Beijing, China

Biologically-inspired visual model, Biologically-inspired motion model, Biological neural network modelling, Robotics,

Yue Wu, Amazon Lab126, Sunnyvale, California, United States of America

Theoretical studies and applications of multimedia signal (audio/image/video) processing, pattern classification and recognition, deep learning and adversarial learning, especially in fields like deep learning algorithmic primitive, Design, text detection and recognition, face detection and recognition, image forensics and forgery detection, Semantic image segmentation and concept verification, fake news detection, image denoising and enhancement, image encryption, steganography and data hiding, chaotic systems, etc

Chang Xu, The University of Sydney, Sydney, New South Wales, Australia

Multi-label learning, Multi-view learning, Multi-task learning, Transfer learning, Adversarial machine learning

Juanjuan Xu, Shandong University, Jinan, China

Cooperative control of multi-agent systems, Neural network for control, Reinforcement learning, Approximate dynamic programming, Optimal control, adaptive control, active noise control

Min Xu, University of Technology Sydney, Broadway, Australia

• Multimedia content understanding, • indexing and retrieval, • Multimedia affective computing, • Social multimedia

Yong Xu, Guangdong University of Technology, Guangzhou, China

Stability analysis, State estimation and synchronization for neural networks

Zenglin Xu, University of Electronics Science and Technology of China School of Computer Science and Engineering, Chengdu, Sichuan, China

Fields of specialization - Kernel learning, Gaussian process, Deep learning, Tensor analysis, Semi-supervised learning

Bo Yan, Fudan University, Shanghai, China

• Image Restoration • Image Enhancement • Image Retargeting

Pingkun Yan, Northwestern Polytechnical University Center for OPTical IMagery Analysis and Learning, Xi'an, Shaanxi, China

Medical image segmentation and registration, Machine learning in medical imaging, Image processing, Neural image analysis,

Yan Yan, Texas State University, Department of Computer Science, San Marcos, Texas, United States of America

Sparse coding, Computer vision, Multimedia, Machine learning, Video analytics

Yan Yan, Xiamen University School of Informatics, Xiamen, China
Chenguang Yang, Swansea University, Swansea, United Kingdom

Guang Yang, Imperial College London, London, United Kingdom
Medical Image Analysis, Data Science, Machine Learning, Deep Learning, AI, Digital Healthcare

Rui Yang, University of Liverpool, Liverpool, United Kingdom
Machine learning, Transfer learning, Neural networks, Deep learning, Artificial intelligence, Data analytics, Domain adaptation, Data driven fault diagnosis, Data driven fault detection, Data driven fault isolation, Fault diagnosis of rotating machinery, Industrial fault diagnosis, Human-computer interaction, Brain-computer interface, Electroencephalogram (EEG) signal classification

Tianbao Yang, The University of Iowa, Iowa City, Iowa, United States of America
large-scale optimization for machine learning, online learning and optimization, randomized algorithms for machine learning, learning from high-dimensional data, big data related topics, and deep learning

Xiaochen Yang, University of Glasgow, Glasgow, United Kingdom
Classification algorithms, metric learning, adversarial robustness, classification, clustering, dimension reduction, Image analysis, few-shot learning, hyperspectral image classification, target detection,

Xingsong Yang, Sichuan University, Chengdu, Sichuan, China
Neural network, Synchonization, Control, Switched systems, Complex networks, Impulsive systems, Multiagent systems

Xuebo Yang, Harbin Institute of Technology, Haerbin, China
Robust control, Adaptive control, Intelligent control, Spacecraft and aircraft, Robot control, Trajectory optimization

Yimin Yang, Western University, Department of Electrical and Computer Engineering, London, Ontario, Canada
Machine learning, deep learning, shallow learning, unsupervised learning, sequential learning, ensemble learning, Pattern recognition, object category and image recognition, video recognition, hybrid system approximation, robotics system approximation, and fault-diagnosis, Data analysis, dimension reduction, feature extraction, EEG-signal processing, data partition, information fusion, and optimization

Yiming Ying, University at Albany, Albany, New York, United States of America
Statistical learning theory (e.g. Consistency, generalization bounds), Large-scale optimization for machine learning (e.g. Online learning, distributed learning), Multi-task learning, Multiple kernel learning, Metric learning, Low-rank matrix factorization,

Hui Yu, University of Portsmouth, Portsmouth, United Kingdom
Facial analysis and recognition, Visual tracking, human action recognition, Robot vision, 3D reconstruction and recognition, Eye gaze analysis

Jun Yu, Xiamen University, Xiamen, China
Image ranking reranking, Image retrieval, Image classification, Image clustering, Object matching, Semi-supervised learning, Distance metric learning, Sparse learning, Low-rank learning, Unsupervised learning, Supervised learning, Multiview learning, Multimodal learning, Hypergraph learning, Subspace learning, Deep learning, Autoencoders, Convolutional neural network, Cartoon animation, Image super-resolution, Video super-resolution, Human pose recovery

Zhu Liang Yu, South China University of Technology School of Automation Science and Engineering, Guangzhou, China
Brain Computer Interfaces, Brain signal processing, Machine learning, biomedical signal processing

Yuan Yuan, Northwestern Polytechnical University, Xian, China
Image Processing, Computer Vision, Remote Sensing Imagery, Hyperspectral Image Analysis, Machine Learning, Neural Networks, Complex Networks

Nianyin Zeng, Fuzhou University, Fuzhou, China
Intelligent Data Analysis (Machine learning, Intelligent algorithm, Bioinformatics, Biomedical image processing, Neural networks), System Modeling (Time-series modeling, System identification, Biomedical modeling and computing, Healthcare information systems), Instrumentation and Measurement (Medical instruments, Power system, Wireless sensor networks)

Zhi-Hui Zhan, South China University of Technology, Guangzhou, China
• Evolutionary Computation (EC); • Evolutionary Algorithm (EA); • Swarm Intelligence (SI); • Particle Swarm Optimization (PSO); • Ant Colony Optimization (ACO); • Genetic Algorithm (GA); • Differential Evolution (DE)
Bin Zhang, University of South Carolina, Department of Mechanical Engineering, Columbia, South Carolina, United States of America
Intelligent systems, Online adaptive and learning systems, Neural and fuzzy systems, Machine learning, Deep learning, Health monitoring and management, Fault detection and isolation, Failure prognosis, and fault tolerant control, Robotics, Mechatronics, Unmanned systems, Electromechanics, Industrial electronics, Dynamic systems, design, modeling, system simulation, Distributed and cooperative systems, Large-scale systems monitoring and control based on information processing and fusion, Smart systems modeling, learning, and adaptation of systems to environment and users,

Haijun H. Zhang, Harbin Institute of Technology Shenzhen School of Computer Science and Technology, Shenzhen, China
Data mining, Clustering/classification, Machine learning, Dimensionality reduction, Document retrieval, Image segmentation/semantics, Recommender systems, Computational advertising

Hongwei Zhang, Harbin Institute of Technology Shenzhen, Shenzhen, China
Cooperative control of multi-agent systems, Neural network for control, Reinforcement learning, Approximate dynamic programming, Optimal control, adaptive control, active noise control,

Huaguang Zhang, Northeastern University, Shenyang, China
Neural network-fuzzy logic, Analysis of network dynamics, Neural network-genetic algorithms,

Jie Zhang, Newcastle University, Newcastle Upon Tyne, United Kingdom
Neural networks for non-linear process modelling and control, Improving the generalisation capability through new training methods and/or combining multiple networks, process monitoring and fault diagnosis, Neuro-fuzzy systems, fuzzy logic, non-linear data dimension reduction (nonlinear PCA), optimal control,

Le Zhang, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
Ensemble learning, Multi-modality learning, Federated learning, Time-series analysis, Neural networks, Person re-identification, Pedestrian detection, Activity recognition/detection, Single and multiple object tracking, Crowd counting, Edge detection, Feature matching, Affect computing, Super-resolution, Age estimation and saliency, Wireless sensing,

Lijun Zhang, Nanjing University, Nanjing, China
Large-scale machine learning and optimization including online learning, bandits, compressive sensing/matrix completion, statistical learning theory, stochastic optimization, and convex optimization, Dimensionality reduction/feature selection, clustering, active learning, and hashing,

Shaoting Zhang, UNC Charlotte, Charlotte, North Carolina, United States of America
Medical Image Analysis, Computer Aided Diagnosis, Segmentation, Deep Learning, Large-scale analysis, Machine Learning

Xiaoming Zhang, Swinburne University of Technology School of Software and Electrical Engineering, Melbourne, Victoria, Australia
Neural networks with time-delays, Networked control systems, Distributed control systems, Stability and state estimation,

Xu-Yao Zhang, Chinese Academy of Sciences Institute of Automation, Beijing, China
Pattern Recognition, Machine Learning, Deep Learning, OCR

Zhiyong Zhang, University of Notre Dame, Notre Dame, Indiana, United States of America
Bayesian methods, Social network analysis, Big data analysis, Nonnormal and missing data analysis,

Bo Zhao, Beijing Normal University, Beijing, China
Adaptive dynamic programming, Reinforcement learning, Optimal control, Neural network-based control, Intelligent control, fault diagnosis and tolerant control, robot control.

Chunhui Zhao, Zhejiang University, Department of Control Science and Engineering, Hangzhou, China
Industrial big data, Data-driven fault detection and diagnosis, Fault prognostic, Health condition maintenance, Glucose monitoring and control for diabetes, Data analysis, Signal processing, Pattern recognition, Deep learning

Peillin Zhao, Tencent AI Lab, Shenzhen, China
• Machine Learning: Online Learning, Stochastic Optimization, Deep Learning, etc. • Applications: Multimedia Search, Computational Finance, Cybersecurity, Computational Biology, • Computer Vision, etc.

Xudong Zhao, Dalian University of Technology, Dalian, China
T-S fuzzy system, Stochastic system, Switched system, Complex network, Neural network,

Jiayu Zhou, Michigan State University, East Lansing, Michigan, United States of America
Machine learning, including multi-task and multi-label learning, deep learning, distance/metric learning, supervised learning (regression and classification), semi-supervised learning, feature selection, sparse learning and dimension reduction, Neuroscience, including brain connection
modeling, computational models using brain images, and general predictive models, disease progression models,

Xiuzhuang Zhou, Beijing University of Posts and Telecommunications, Beijing, China
Computer vision, visual tracking, face recognition, action recognition, image retrieval, Machine learning, metric learning, feature learning, multi-view learning, Bayesian learning,

Rui Zhu, City University of London, London, United Kingdom
Subspace-based classification, Metric learning, Spectral data analysis, Imbalanced learning, Image quality assessment,

Xiaofeng Zhu, Guangxi Normal University, Guilin, China
Feature selection, Subspace learning, Sparse coding, Multi-task learning, Missing value imputation, Cost-sensitive learning, Hashing, Medical image classification, Spectral clustering

Xiahai Zhuang, Fudan University, School of Data Science, Shanghai, China
Medical image analysis, Medical imaging, Bayesian deep learning, Super resolution

Lei Zou, Donghua University, Shanghai, China
Kalman filtering, Recursive state estimation, Distributed filtering
This journal encourages and enables you to share software that supports your research publication where appropriate, and enables you to interlink the software and data with your published article. You have the option to convert your open source software into an additional journal publication in Software Impacts, a multi-disciplinary open access journal that provides a scholarly reference to software that has been used to address a research challenge. It ensures that your software is actively reviewed, curated, formatted, indexed, given a DOI and publicly available to all upon publication. You are encouraged to submit your article to Software Impacts as an additional item. If your research article is accepted, please note an open access fee of 250 USD is payable for publication in Software Impacts. Full details can be found on the Software Impacts website. Please use this template to write your Software Impacts article.

Submission checklist
You can use this list to carry out a final check of your submission before you send it to the journal for review. Please check the relevant section in this Guide for Authors for more details.

Ensure that the following items are present:

One author has been designated as the corresponding author with contact details:
- E-mail address
- Full postal address

All necessary files have been uploaded:

Manuscript:
- Include keywords
- All figures (include relevant captions)
- All tables (including titles, description, footnotes)
- Ensure all figure and table citations in the text match the files provided
- Indicate clearly if color should be used for any figures in print

Graphical Abstracts / Highlights files (where applicable)
Supplemental files (where applicable)

Further considerations
- Manuscript has been 'spell checked' and 'grammar checked'
- All references mentioned in the Reference List are cited in the text, and vice versa
- Permission has been obtained for use of copyrighted material from other sources (including the Internet)
- A competing interests statement is provided, even if the authors have no competing interests to declare
- Journal policies detailed in this guide have been reviewed
- Referee suggestions and contact details provided, based on journal requirements

For further information, visit our Support Center.

BEFORE YOU BEGIN

Ethics in publishing
Please see our information on Ethics in publishing.

Declaration of competing interest
Corresponding authors, on behalf of all the authors of a submission, must disclose any financial and personal relationships with other people or organizations that could inappropriately influence (bias) their work. Examples of potential conflicts of interest include employment, consultancies, stock ownership, honoraria, paid expert testimony, patent applications/registrations, and grants or other funding. All authors, including those without competing interests to declare, should provide the relevant information to the corresponding author (which, where relevant, may specify they have nothing to declare). Corresponding authors should then use this tool to create a shared statement and upload to the submission system at the Attach Files step. Please do not convert the .docx template to another file type. Author signatures are not required.
Declaration of generative AI in scientific writing

The below guidance only refers to the writing process, and not to the use of AI tools to analyse and draw insights from data as part of the research process.

Where authors use generative artificial intelligence (AI) and AI-assisted technologies in the writing process, authors should only use these technologies to improve readability and language. Applying the technology should be done with human oversight and control, and authors should carefully review and edit the result, as AI can generate authoritative-sounding output that can be incorrect, incomplete or biased. AI and AI-assisted technologies should not be listed as an author or co-author, or be cited as an author. Authorship implies responsibilities and tasks that can only be attributed to and performed by humans, as outlined in Elsevier’s AI policy for authors.

Authors should disclose in their manuscript the use of AI and AI-assisted technologies in the writing process by following the instructions below. A statement will appear in the published work. Please note that authors are ultimately responsible and accountable for the contents of the work.

Disclosure instructions

Authors must disclose the use of generative AI and AI-assisted technologies in the writing process by adding a statement at the end of their manuscript in the core manuscript file, before the References list. The statement should be placed in a new section entitled ‘Declaration of Generative AI and AI-assisted technologies in the writing process’.

Statement: During the preparation of this work the author(s) used [NAME TOOL / SERVICE] in order to [REASON]. After using this tool/service, the author(s) reviewed and edited the content as needed and take(s) full responsibility for the content of the publication.

This declaration does not apply to the use of basic tools for checking grammar, spelling, references etc. If there is nothing to disclose, there is no need to add a statement.

Submission declaration and verification

Submission of an article implies that the work described has not been published previously (except in the form of an abstract, a published lecture or academic thesis, see ‘Multiple, redundant or concurrent publication’ for more information), that it is not under consideration for publication elsewhere, that its publication is approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out, and that, if accepted, it will not be published elsewhere in the same form, in English or in any other language, including electronically without the written consent of the copyright-holder. To verify compliance, your article may be checked by Crossref Similarity Check and other originality or duplicate checking software.

Preprints

Please note that preprints can be shared anywhere at any time, in line with Elsevier’s sharing policy. Sharing your preprints e.g. on a preprint server will not count as prior publication (see ‘Multiple, redundant or concurrent publication’ for more information).

Preprint posting on SSRN

In support of Open Science, this journal offers its authors a free preprint posting service. Preprints provide early registration and dissemination of your research, which facilitates early citations and collaboration.

During submission to Editorial Manager, you can choose to release your manuscript publicly as a preprint on the preprint server SSRN once it enters peer-review with the journal. Your choice will have no effect on the editorial process or outcome with the journal. Please note that the corresponding author is expected to seek approval from all co-authors before agreeing to release the manuscript publicly on SSRN.

You will be notified via email when your preprint is posted online and a Digital Object Identifier (DOI) is assigned. Your preprint will remain globally available free to read whether the journal accepts or rejects your manuscript.

For more information about posting to SSRN, please consult the SSRN Terms of Use and FAQs.
Use of inclusive language
Inclusive language acknowledges diversity, conveys respect to all people, is sensitive to differences, and promotes equal opportunities. Content should make no assumptions about the beliefs or commitments of any reader; contain nothing which might imply that one individual is superior to another on the grounds of age, gender, race, ethnicity, culture, sexual orientation, disability or health condition; and use inclusive language throughout. Authors should ensure that writing is free from bias, stereotypes, slang, reference to dominant culture and/or cultural assumptions. We advise to seek gender neutrality by using plural nouns ("clinicians, patients/clients") as default/wherever possible to avoid using "he, she," or "he/she." We recommend avoiding the use of descriptors that refer to personal attributes such as age, gender, race, ethnicity, culture, sexual orientation, disability or health condition unless they are relevant and valid. When coding terminology is used, we recommend to avoid offensive or exclusionary terms such as "master", "slave", "blacklist" and "whitelist". We suggest using alternatives that are more appropriate and (self-) explanatory such as "primary", "secondary", "blocklist" and "allowlist". These guidelines are meant as a point of reference to help identify appropriate language but are by no means exhaustive or definitive.

Reporting sex- and gender-based analyses
Reporting guidance
For research involving or pertaining to humans, animals or eukaryotic cells, investigators should integrate sex and gender-based analyses (SGBA) into their research design according to funder/sponsor requirements and best practices within a field. Authors should address the sex and/or gender dimensions of their research in their article. In cases where they cannot, they should discuss this as a limitation to their research's generalizability. Importantly, authors should explicitly state what definitions of sex and/or gender they are applying to enhance the precision, rigor and reproducibility of their research and to avoid ambiguity or conflation of terms and the constructs to which they refer (see Definitions section below). Authors can refer to the **Sex and Gender Equity in Research (SAGER) guidelines** and the **SAGER guidelines checklist**. These offer systematic approaches to the use and editorial review of sex and gender information in study design, data analysis, outcome reporting and research interpretation - however, please note there is no single, universally agreed-upon set of guidelines for defining sex and gender.

Definitions
Sex generally refers to a set of biological attributes that are associated with physical and physiological features (e.g., chromosomal genotype, hormonal levels, internal and external anatomy). A binary sex categorization (male/female) is usually designated at birth ("sex assigned at birth"), most often based solely on the visible external anatomy of a newborn. Gender generally refers to socially constructed roles, behaviors, and identities of women, men and gender-diverse people that occur in a historical and cultural context and may vary across societies and over time. Gender influences how people view themselves and each other, how they behave and interact and how power is distributed in society. Sex and gender are often incorrectly portrayed as binary (female/male or woman/man) and unchanging whereas these constructs actually exist along a spectrum and include additional sex categorizations and gender identities such as people who are intersex/have differences of sex development (DSD) or identify as non-binary. Moreover, the terms "sex" and "gender" can be ambiguous—thus it is important for authors to define the manner in which they are used. In addition to this definition guidance and the SAGER guidelines, the resources on this page offer further insight around sex and gender in research studies.

Author contributions
For transparency, we require corresponding authors to provide co-author contributions to the manuscript using the relevant CRediT roles. The CRediT taxonomy includes 14 different roles describing each contributor's specific contribution to the scholarly output. The roles are: Conceptualization; Data curation; Formal analysis; Funding acquisition; Investigation; Methodology; Project administration; Resources; Software; Supervision; Validation; Visualization; Roles/Writing - original draft; and Writing - review & editing. Note that not all roles may apply to every manuscript, and authors may have contributed through multiple roles. More details and an example.

Changes to authorship
Authors are expected to consider carefully the list and order of authors **before** submitting their manuscript and provide the definitive list of authors at the time of the original submission. Any addition, deletion or rearrangement of author names in the authorship list should be made only **before** the manuscript has been accepted and only if approved by the journal Editor. To request such
a change, the Editor must receive the following from the **corresponding author**: (a) the reason for the change in author list and (b) written confirmation (e-mail, letter) from all authors that they agree with the addition, removal or rearrangement. In the case of addition or removal of authors, this includes confirmation from the author being added or removed. Only in exceptional circumstances will the Editor consider the addition, deletion or rearrangement of authors **after** the manuscript has been accepted. While the Editor considers the request, publication of the manuscript will be suspended. If the manuscript has already been published in an online issue, any requests approved by the Editor will result in a corrigendum.

IMPORTANT NOTE: The Journal does not allow multiple corresponding authors. The manuscript being submitted should have only one designated corresponding author, both in the submission system and the manuscript file, throughout the editorial process and publication process if the manuscript is accepted. All correspondence from Elsevier during the editorial process will be directed to the corresponding author specified in the submission system. If the corresponding author for the accepted and published version of a paper is different, this should be clearly indicated in the submitted paper and verified during the correction of the print proofs. The print proofs should clearly indicate the corresponding author after publication. In any case, the manuscript should have only one corresponding author throughout the editorial process and after acceptance.

Article transfer service
This journal uses the Elsevier Article Transfer Service to find the best home for your manuscript. This means that if an editor feels your manuscript is more suitable for an alternative journal, you might be asked to consider transferring the manuscript to such a journal. The recommendation might be provided by a Journal Editor, a dedicated Scientific Managing Editor, a tool assisted recommendation, or a combination. If you agree, your manuscript will be transferred, though you will have the opportunity to make changes to the manuscript before the submission is complete. Please note that your manuscript will be independently reviewed by the new journal. More information.

Copyright
Upon acceptance of an article, authors will be asked to complete a 'Journal Publishing Agreement' (see more information on this). An e-mail will be sent to the corresponding author confirming receipt of the manuscript together with a 'Journal Publishing Agreement' form or a link to the online version of this agreement.

Subscribers may reproduce tables of contents or prepare lists of articles including abstracts for internal circulation within their institutions. Permission of the Publisher is required for resale or distribution outside the institution and for all other derivative works, including compilations and translations. If excerpts from other copyrighted works are included, the author(s) must obtain written permission from the copyright owners and credit the source(s) in the article. Elsevier has preprinted forms for use by authors in these cases.

For gold open access articles: Upon acceptance of an article, authors will be asked to complete a 'License Agreement' (more information). Permitted third party reuse of gold open access articles is determined by the author's choice of user license.

Author rights
As an author you (or your employer or institution) have certain rights to reuse your work. More information.

Elsevier supports responsible sharing
Find out how you can share your research published in Elsevier journals.

Role of the funding source
You are requested to identify who provided financial support for the conduct of the research and/or preparation of the article and to briefly describe the role of the sponsor(s), if any, in study design; in the collection, analysis and interpretation of data; in the writing of the report; and in the decision to submit the article for publication. If the funding source(s) had no such involvement, it is recommended to state this.

Open access
Please visit our Open Access page for more information.
Elsevier Researcher Academy

Researcher Academy is a free e-learning platform designed to support early and mid-career researchers throughout their research journey. The "Learn" environment at Researcher Academy offers several interactive modules, webinars, downloadable guides and resources to guide you through the process of writing for research and going through peer review. Feel free to use these free resources to improve your submission and navigate the publication process with ease.

Language (usage and editing services)
Please write your text in good English (American or British usage is accepted, but not a mixture of these). Authors who feel their English language manuscript may require editing to eliminate possible grammatical or spelling errors and to conform to correct scientific English may wish to use the Language Editing service available from Elsevier's Language Services.

Submission
Our online submission system guides you stepwise through the process of entering your article details and uploading your files. The system converts your article files to a single PDF file used in the peer-review process. Editable files (e.g., Word, LaTeX) are required to typeset your article for final publication. All correspondence, including notification of the Editor's decision and requests for revision, is sent by e-mail.

Original Software Publications
The Software Track of Neurocomputing publishes Original Software Publications (OSP) to disseminate exiting and useful software in the areas of neural networks and learning systems, including, but not restricted to, architectures, learning methods, analysis of network dynamics, theories of learning, self-organization, biological neural network modelling, sensorimotor transformations and interdisciplinary topics with artificial intelligence, artificial life, cognitive science, computational learning theory, fuzzy logic, genetic algorithms, information theory, machine learning, neurobiology and pattern recognition. We encourage high-quality original software submissions which contain non-trivial contributions in the above areas related to the implementations of algorithms, toolboxes, and real systems. The software must adhere to a recognized legal license, such as OSI approved licenses. Importantly, the software will be a full publication that is able to capture your software updates as and once they are released. To fully acknowledge the author's/developers software work your software will be fully citable as an Original Software Publication, archived and indexed and available as a complete online "body of work" for other researchers and practitioners to discover.

See the detailed Submission instructions, and more information about the process for academically publishing your Software: here

When preparing your manuscript, please make sure that you strictly adhere to the OSP Template for Original Software Publications and Software Update Template for updates to your Software.

The open access publication fee for Original Software Publications included in the Software Track of this journal is $500, excluding taxes. Software Updates referring to published Original Software Publications will be made open access free of charge.

PREPARATION

Queries
For questions about the editorial process (including the status of manuscripts under review) or for technical support on submissions, please visit our Support Center.

Peer review
This journal operates a single anonymized review process. All contributions will be initially assessed by the editor for suitability for the journal. Papers deemed suitable are then typically sent to a minimum of two independent expert reviewers to assess the scientific quality of the paper. The Editor is responsible for the final decision regarding acceptance or rejection of articles. The Editor's decision is final. Editors are not involved in decisions about papers which they have written themselves or have been written by family members or colleagues or which relate to products or services in which the editor has an interest. Any such submission is subject to all of the journal's usual procedures, with peer review handled independently of the relevant editor and their research groups. More information on types of peer review.
Use of word processing software
It is important that the file be saved in the native format of the word processor used. The text should be in single-column format. Keep the layout of the text as simple as possible. Most formatting codes will be removed and replaced on processing the article. In particular, do not use the word processor's options to justify text or to hyphenate words. However, do use bold face, italics, subscripts, superscripts etc. When preparing tables, if you are using a table grid, use only one grid for each individual table and not a grid for each row. If no grid is used, use tabs, not spaces, to align columns. The electronic text should be prepared in a way very similar to that of conventional manuscripts (see also the Guide to Publishing with Elsevier). Note that source files of figures, tables and text graphics will be required whether or not you embed your figures in the text. See also the section on Electronic artwork.
To avoid unnecessary errors you are strongly advised to use the 'spell-check' and 'grammar-check' functions of your word processor.

LaTeX
You are recommended to use the Elsevier article class elsarticle.cls to prepare your manuscript and BibTeX to generate your bibliography.
Our LaTeX site has detailed submission instructions, templates and other information.

Article structure
Subdivision - numbered sections
Divide your article into clearly defined and numbered sections. Subsections should be numbered 1.1 (then 1.1.1, 1.1.2, ...), 1.2, etc. (the abstract is not included in section numbering). Use this numbering also for internal cross-referencing: do not just refer to 'the text'. Any subsection may be given a brief heading. Each heading should appear on its own separate line.

Introduction
State the objectives of the work and provide an adequate background, avoiding a detailed literature survey or a summary of the results.

Material and methods
Provide sufficient details to allow the work to be reproduced by an independent researcher. Methods that are already published should be summarized, and indicated by a reference. If quoting directly from a previously published method, use quotation marks and also cite the source. Any modifications to existing methods should also be described.

Experimental
Provide sufficient details to allow the work to be reproduced by an independent researcher. Methods that are already published should be summarized, and indicated by a reference. If quoting directly from a previously published method, use quotation marks and also cite the source. Any modifications to existing methods should also be described.

Theory/calculation
A Theory section should extend, not repeat, the background to the article already dealt with in the Introduction and lay the foundation for further work. In contrast, a Calculation section represents a practical development from a theoretical basis.

Results
Results should be clear and concise.

Discussion
This should explore the significance of the results of the work, not repeat them. A combined Results and Discussion section is often appropriate. Avoid extensive citations and discussion of published literature.

Conclusions
The main conclusions of the study may be presented in a short Conclusions section, which may stand alone or form a subsection of a Discussion or Results and Discussion section.

Appendices
If there is more than one appendix, they should be identified as A, B, etc. Formulae and equations in appendices should be given separate numbering: Eq. (A.1), Eq. (A.2), etc.; in a subsequent appendix, Eq. (B.1) and so on. Similarly for tables and figures: Table A.1; Fig. A.1, etc.
Vitae
Submit a short (maximum 100 words) biography of each author, along with a passport-type photograph accompanying the other figures. Please provide the biography in an editable format (e.g. Word), not in PDF format.

Essential title page information
• Title. Concise and informative. Titles are often used in information-retrieval systems. Avoid abbreviations and formulae where possible.
• Author names and affiliations. Please clearly indicate the given name(s) and family name(s) of each author and check that all names are accurately spelled. You can add your name between parentheses in your own script behind the English transliteration. Present the authors' affiliation addresses (where the actual work was done) below the names. Indicate all affiliations with a lower-case superscript letter immediately after the author's name and in front of the appropriate address. Provide the full postal address of each affiliation, including the country name and, if available, the e-mail address of each author.
• Corresponding author. Clearly indicate who will handle correspondence at all stages of refereeing and publication, also post-publication. This responsibility includes answering any future queries about Methodology and Materials. Ensure that the e-mail address is given and that contact details are kept up to date by the corresponding author.
• Present/permanent address. If an author has moved since the work described in the article was done, or was visiting at the time, a 'Present address' (or 'Permanent address') may be indicated as a footnote to that author's name. The address at which the author actually did the work must be retained as the main, affiliation address. Superscript Arabic numerals are used for such footnotes.

Highlights
Highlights are optional yet highly encouraged for this journal, as they increase the discoverability of your article via search engines. They consist of a short collection of bullet points that capture the novel results of your research as well as new methods that were used during the study (if any). Please have a look at the example Highlights.

Highlights should be submitted in a separate editable file in the online submission system. Please use 'Highlights' in the file name and include 3 to 5 bullet points (maximum 85 characters, including spaces, per bullet point).

Abstract
A concise and factual abstract is required. The abstract should state briefly the purpose of the research, the principal results and major conclusions. An abstract is often presented separately from the article, so it must be able to stand alone. For this reason, References should be avoided, but if essential, then cite the author(s) and year(s). Also, non-standard or uncommon abbreviations should be avoided, but if essential they must be defined at their first mention in the abstract itself.

Keywords
Immediately after the abstract, provide a maximum of 6 keywords, using American spelling and avoiding general and plural terms and multiple concepts (avoid, for example, 'and', 'of'). Be sparing with abbreviations: only abbreviations firmly established in the field may be eligible. These keywords will be used for indexing purposes.

Acknowledgements
Collate acknowledgements in a separate section at the end of the article before the references and do not, therefore, include them on the title page, as a footnote to the title or otherwise. List here those individuals who provided help during the research (e.g., providing language help, writing assistance or proof reading the article, etc.).

Formatting of funding sources
List funding sources in this standard way to facilitate compliance to funder's requirements:

Funding: This work was supported by the National Institutes of Health [grant numbers xxxx, yyyy]; the Bill & Melinda Gates Foundation, Seattle, WA [grant number zzzz]; and the United States Institutes of Peace [grant number aaaa].

It is not necessary to include detailed descriptions on the program or type of grants and awards. When funding is from a block grant or other resources available to a university, college, or other research institution, submit the name of the institute or organization that provided the funding.
If no funding has been provided for the research, it is recommended to include the following sentence:

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Units
Follow internationally accepted rules and conventions: use the international system of units (SI). If other units are mentioned, please give their equivalent in SI.

math formulae
Present simple formulae in the line of normal text where possible and use the solidus (/) instead of a horizontal line for small fractional terms, e.g., X/Y. In principle, variables are to be presented in italics. Powers of e are often more conveniently denoted by exp. Number consecutively any equations that have to be displayed separately from the text (if referred to explicitly in the text).

Note: When uploading a Word 2007 file containing mathematical equations, please check and make sure that the mathematical equations are properly processed when generating the PDF. If they are not, check out the instructions described on https://service.elsevier.com/app/answers/detail/a_id/302

Footnotes
Footnotes should be used sparingly. Number them consecutively throughout the article. Many word processors can build footnotes into the text, and this feature may be used. Otherwise, please indicate the position of footnotes in the text and list the footnotes themselves separately at the end of the article. Do not include footnotes in the Reference list.

Artwork
Electronic artwork
General points
- Make sure you use uniform lettering and sizing of your original artwork.
- Embed the used fonts if the application provides that option.
- Aim to use the following fonts in your illustrations: Arial, Courier, Times New Roman, Symbol, or use fonts that look similar.
- Number the illustrations according to their sequence in the text.
- Use a logical naming convention for your artwork files.
- Provide captions to illustrations separately.
- Size the illustrations close to the desired dimensions of the published version.
- Submit each illustration as a separate file.
- Ensure that color images are accessible to all, including those with impaired color vision.

A detailed guide on electronic artwork is available.

You are urged to visit this site; some excerpts from the detailed information are given here.

Formats
If your electronic artwork is created in a Microsoft Office application (Word, PowerPoint, Excel) then please supply 'as is' in the native document format.

Regardless of the application used other than Microsoft Office, when your electronic artwork is finalized, please 'Save as' or convert the images to one of the following formats (note the resolution requirements for line drawings, halftones, and line/halftone combinations given below):

EPS (or PDF): Vector drawings, embed all used fonts.
TIFF (or JPEG): Color or grayscale photographs (halftones), keep to a minimum of 300 dpi.
TIFF (or JPEG): Bitmapped (pure black & white pixels) line drawings, keep to a minimum of 1000 dpi.
TIFF (or JPEG): Combinations bitmapped line/half-tone (color or grayscale), keep to a minimum of 500 dpi.

Please do not:
- Supply files that are optimized for screen use (e.g., GIF, BMP, PICT, WPG); these typically have a low number of pixels and limited set of colors;
- Supply files that are too low in resolution;
- Submit graphics that are disproportionately large for the content.
Color artwork
Please make sure that artwork files are in an acceptable format (TIFF (or JPEG), EPS (or PDF) or MS Office files) and with the correct resolution. If, together with your accepted article, you submit usable color figures then Elsevier will ensure, at no additional charge, that these figures will appear in color online (e.g., ScienceDirect and other sites) in addition to color reproduction in print. Further information on the preparation of electronic artwork.

Figure captions
Ensure that each illustration has a caption. Supply captions separately, not attached to the figure. A caption should comprise a brief title (not on the figure itself) and a description of the illustration. Keep text in the illustrations themselves to a minimum but explain all symbols and abbreviations used.

Tables
Please submit tables as editable text and not as images. Tables can be placed either next to the relevant text in the article, or on separate page(s) at the end. Number tables consecutively in accordance with their appearance in the text and place any table notes below the table body. Be sparing in the use of tables and ensure that the data presented in them do not duplicate results described elsewhere in the article. Please avoid using vertical rules and shading in table cells.

References
Citation in text
Please ensure that every reference cited in the text is also present in the reference list (and vice versa). Any references cited in the abstract must be given in full. Unpublished results and personal communications are not recommended in the reference list, but may be mentioned in the text. If these references are included in the reference list they should follow the standard reference style of the journal and should include a substitution of the publication date with either 'Unpublished results' or 'Personal communication'. Citation of a reference as 'in press' implies that the item has been accepted for publication.

Reference links
Increased discoverability of research and high quality peer review are ensured by online links to the sources cited. In order to allow us to create links to abstracting and indexing services, such as Scopus, CrossRef and PubMed, please ensure that data provided in the references are correct. Please note that incorrect surnames, journal/book titles, publication year and pagination may prevent link creation. When copying references, please be careful as they may already contain errors. Use of the DOI is highly encouraged.

A DOI is guaranteed never to change, so you can use it as a permanent link to any electronic article. An example of a citation using DOI for an article not yet in an issue is: VanDecar J.C., Russo R.M., James D.E., Ambeh W.B., Franke M. (2003). Aseismic continuation of the Lesser Antilles slab beneath northeastern Venezuela. Journal of Geophysical Research, https://doi.org/10.1029/2001JB000884. Please note the format of such citations should be in the same style as all other references in the paper.

Web references
As a minimum, the full URL should be given and the date when the reference was last accessed. Any further information, if known (DOI, author names, dates, reference to a source publication, etc.), should also be given. Web references can be listed separately (e.g., after the reference list) under a different heading if desired, or can be included in the reference list.

Data references
This journal encourages you to cite underlying or relevant datasets in your manuscript by citing them in your text and including a data reference in your Reference List. Data references should include the following elements: author name(s), dataset title, data repository, version (where available), year, and global persistent identifier. Add [dataset] immediately before the reference so we can properly identify it as a data reference. The [dataset] identifier will not appear in your published article.

Reference to software
We recommend that software (including computational code, scripts, models, notebooks and libraries) should be cited in the same way as other sources of information to support proper attribution and credit, reproducibility, collaboration and reuse, and encourage building on the work of others to further research. To facilitate this, useful information is provided in this article on the essentials of software citation by FORCE 11, of which Elsevier is a member. A reference to software should always include the following elements: creator(s) e.g. the authors or project that developed the software, software title, software repository, version (where available), year, and global persistent identifier.
Preprint references
Where a preprint has subsequently become available as a peer-reviewed publication, the formal publication should be used as the reference. If there are preprints that are central to your work or that cover crucial developments in the topic, but are not yet formally published, these may be referenced. Preprints should be clearly marked as such, for example by including the word preprint, or the name of the preprint server, as part of the reference. The preprint DOI should also be provided.

References in a special issue
Please ensure that the words ‘this issue’ are added to any references in the list (and any citations in the text) to other articles in the same Special Issue.

Reference management software
Most Elsevier journals have their reference template available in many of the most popular reference management software products. These include all products that support Citation Style Language styles, such as Mendeley. Using citation plug-ins from these products, authors only need to select the appropriate journal template when preparing their article, after which citations and bibliographies will be automatically formatted in the journal’s style. If no template is yet available for this journal, please follow the format of the sample references and citations as shown in this Guide. If you use reference management software, please ensure that you remove all field codes before submitting the electronic manuscript. More information on how to remove field codes from different reference management software.

Reference formatting
There are no strict requirements on reference formatting at submission. References can be in any style or format as long as the style is consistent. Where applicable, author(s) name(s), journal title/book title, chapter title/article title, year of publication, volume number/book chapter and the article number or pagination must be present. Use of DOI is highly encouraged. The reference style used by the journal will be applied to the accepted article by Elsevier at the proof stage. Note that missing data will be highlighted at proof stage for the author to correct. If you do wish to format the references yourself they should be arranged according to the following examples:

Reference style
Text: Indicate references by number(s) in square brackets in line with the text. The actual authors can be referred to, but the reference number(s) must always be given. Example: ‘….. as demonstrated [3,6]. Barnaby and Jones [8] obtained a different result’
List: Number the references (numbers in square brackets) in the list in the order in which they appear in the text.
Examples:

Reference to a journal publication:
Reference to a journal publication with an article number:
Reference to a book:
Reference to a chapter in an edited book:
Reference to a website:
Reference to a dataset:
Reference to software:
Journal abbreviations source
Journal names should be abbreviated according to the List of Title Word Abbreviations.

Video
Elsevier accepts video material and animation sequences to support and enhance your scientific research. Authors who have video or animation files that they wish to submit with their article are strongly encouraged to include links to these within the body of the article. This can be done in the same way as a figure or table by referring to the video or animation content and noting in the body text where it should be placed. All submitted files should be properly labeled so that they directly relate to the video file's content. In order to ensure that your video or animation material is directly usable, please provide the file in one of our recommended file formats with a preferred maximum size of 150 MB per file, 1 GB in total. Video and animation files supplied will be published online in the electronic version of your article in Elsevier Web products, including ScienceDirect. Please supply 'stills' with your files: you can choose any frame from the video or animation or make a separate image. These will be used instead of standard icons and will personalize the link to your video data. For more detailed instructions please visit our video instruction pages. Note: since video and animation cannot be embedded in the print version of the journal, please provide text for both the electronic and the print version for the portions of the article that refer to this content.

Data visualization
Include interactive data visualizations in your publication and let your readers interact and engage more closely with your research. Follow the instructions here to find out about available data visualization options and how to include them with your article.

Supplementary material
Supplementary material such as applications, images and sound clips, can be published with your article to enhance it. Submitted supplementary items are published exactly as they are received (Excel or PowerPoint files will appear as such online). Please submit your material together with the article and supply a concise, descriptive caption for each supplementary file. If you wish to make changes to supplementary material during any stage of the process, please make sure to provide an updated file. Do not annotate any corrections on a previous version. Please switch off the 'Track Changes' option in Microsoft Office files as these will appear in the published version.

Research data
This journal requires and enables you to share data that supports your research publication where appropriate, and enables you to interlink the data with your published articles. Research data refers to the results of observations or experimentation that validate research findings, which may also include software, code, models, algorithms, protocols, methods and other useful materials related to the project.

Below are a number of ways in which you can associate data with your article or make a statement about the availability of your data when submitting your manuscript. When sharing data in one of these ways, you are expected to cite the data in your manuscript and reference list. Please refer to the "References" section for more information about data citation. For more information on depositing, sharing and using research data and other relevant research materials, visit the research data page.

Data linking
If you have made your research data available in a data repository, you can link your article directly to the dataset. Elsevier collaborates with a number of repositories to link articles on ScienceDirect with relevant repositories, giving readers access to underlying data that gives them a better understanding of the research described.

There are different ways to link your datasets to your article. When available, you can directly link your dataset to your article by providing the relevant information in the submission system. For more information, visit the database linking page.

For supported data repositories a repository banner will automatically appear next to your published article on ScienceDirect.

In addition, you can link to relevant data or entities through identifiers within the text of your manuscript, using the following format: Database: xxxx (e.g., TAIR: AT1G01020; CCDC: 734053; PDB: 1XFN).
Data statement
To foster transparency, we require you to state the availability of your data in your submission if your data is unavailable to access or unsuitable to post. This may also be a requirement of your funding body or institution. You will have the opportunity to provide a data statement during the submission process. The statement will appear with your published article on ScienceDirect. For more information, visit the Data Statement page..

AFTER ACCEPTANCE

Online proof correction
To ensure a fast publication process of the article, we kindly ask authors to provide us with their proof corrections within two days. Corresponding authors will receive an e-mail with a link to our online proofing system, allowing annotation and correction of proofs online. The environment is similar to MS Word: in addition to editing text, you can also comment on figures/tables and answer questions from the Copy Editor. Web-based proofing provides a faster and less error-prone process by allowing you to directly type your corrections, eliminating the potential introduction of errors.
If preferred, you can still choose to annotate and upload your edits on the PDF version. All instructions for proofing will be given in the e-mail we send to authors, including alternative methods to the online version and PDF.
We will do everything possible to get your article published quickly and accurately. Please use this proof only for checking the typesetting, editing, completeness and correctness of the text, tables and figures. Significant changes to the article as accepted for publication will only be considered at this stage with permission from the Editor. It is important to ensure that all corrections are sent back to us in one communication. Please check carefully before replying, as inclusion of any subsequent corrections cannot be guaranteed. Proofreading is solely your responsibility.

Offprints
The corresponding author will, at no cost, receive a customized Share Link providing 50 days free access to the final published version of the article on ScienceDirect. The Share Link can be used for sharing the article via any communication channel, including email and social media. For an extra charge, paper offprints can be ordered via the offprint order form which is sent once the article is accepted for publication. Corresponding authors who have published their article gold open access do not receive a Share Link as their final published version of the article is available open access on ScienceDirect and can be shared through the article DOI link.

AUTHOR INQUIRIES
Visit the Elsevier Support Center to find the answers you need. Here you will find everything from Frequently Asked Questions to ways to get in touch.
You can also check the status of your submitted article or find out when your accepted article will be published.

© Copyright 2018 Elsevier | https://www.elsevier.com