Fluid Phase Equilibria

An International Journal

Fluid Phase Equilibria - ISSN 0378-3812
Source Normalized Impact per Paper (SNIP): 1.201 Source Normalized Impact per Paper (SNIP):
SNIP measures contextual citation impact by weighting citations based on the total number of citations in a subject field.
SCImago Journal Rank (SJR): 0.762 SCImago Journal Rank (SJR):
SJR is a prestige metric based on the idea that not all citations are the same. SJR uses a similar algorithm as the Google page rank; it provides a quantitative and a qualitative measure of the journal’s impact.
Impact Factor: 2.838 (2019) Impact Factor:
The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years.
© 2017 Journal Citation Reports ® (Clarivate Analytics, 2017)
5 Year Impact Factor: 2.454 (2019) Five-Year Impact Factor:
To calculate the five year Impact Factor, citations are counted in 2016 to the previous five years and divided by the source items published in the previous five years.
© 2017 Journal Citation Reports ® (Clarivate Analytics, 2017)
Volumes: Volumes 503-526
Issues: 24 issues
ISSN: 03783812
Editor-in-Chief: McCabe

Institutional Subscription

Sales tax will be calculated at check-out Price includes VAT/GST
eJournal
This journal does not feature personal pricing and is not available for personal subscription.

Secure Checkout

Personal information is secured with SSL technology.

Free Shipping

Free global shipping
No minimum order.

Description

Fluid Phase Equilibria publishes high-quality papers dealing with experimental, theoretical, and applied research related to equilibrium and transport properties of fluids, solids, and interfaces. Subjects of interest include physical/phase and chemical equilibria; equilibrium and nonequilibrium thermophysical properties; fundamental thermodynamic relations; and stability. The systems central to the journal include pure substances and mixtures of organic and inorganic materials, including polymers, biochemicals, and surfactants with sufficient characterization of composition and purity for the results to be reproduced. Alloys are of interest only when thermodynamic studies are included, purely material studies will not be considered. In all cases, authors are expected to provide physical or chemical interpretations of the results.

Experimental research can include measurements under all conditions of temperature, pressure, and composition, including critical and supercritical. Measurements are to be associated with systems and conditions of fundamental or applied interest, and may not be only a collection of routine data, such as physical property or solubility measurements at limited pressures and temperatures close to ambient, or surfactant studies focussed strictly on micellisation or micelle structure. Papers reporting common data must be accompanied by new physical insights and/or contemporary or new theory or techniques. All data reports and analyses will be examined by NIST for consistency with the requirements posted at http://trc.nist.gov/FPE-Support.html

Theoretical and computational studies can include equations of state; correlations or predictive models; molecular dynamics and Monte Carlo simulations; statistical thermodynamics; quantum chemistry; and other applied mathematical and computational approaches. Research reporting new theories and models are expected to show adequate comparisons of predictive ability and accuracy with both applicable data and contemporary existing models. Contributions on artificial neural networks, machine learning, and similar approaches will only be considered when full details of the methodology are provided and comparisons of accuracy are made with existing physically-based models, or if no thermodynamic models are available. All reported computational studies must be fully reproducible by others. As such all algorithms and methods should be described in sufficient detail, all parameters for models, force fields, and electronic structure methods should be given explicitly in the manuscript or supporting information.

The journal publishes full research papers and also short communications to describe emerging ideas for which rapid publication is essential. Critical reviews are encouraged and should be prepared in consultation with the Editor-in-Chief. The journal will not publish articles that have appeared partially, or completely, in other journals, that plagiarize other works, or that are incompletely referenced; verification will be made using the software at http://www.ithenticate.com/products/crosscheck. The text must be in English and should be clear, in a well-structured style, and be free of grammatical and spelling errors.