DNA Repair provides a forum for the comprehensive coverage of DNA repair and cellular responses to DNA damage. The journal publishes original observations on genetic, cellular, biochemical, structural and molecular aspects of DNA repair, mutagenesis, cell cycle regulation, apoptosis and other biological responses in cells exposed to genomic insult, as well as their relationship to human disease.

DNA Repair publishes full-length research articles, brief reports on research, and reviews. The journal welcomes articles describing databases, methods and new technologies supporting research on DNA repair and responses to DNA damage. Letters to the Editor, hot topics and classics in DNA repair, historical reflections, book reviews and meeting reports also will be considered for publication.

Benefits to authors
We also provide many author benefits, such as free PDFs, a liberal copyright policy, special discounts on Elsevier publications and much more. Please click here for more information on our author services.

Please see our Guide for Authors for information on article submission. If you require any further information or help, please visit our Support Center.

IMPACT FACTOR
2019: 3.339 © Clarivate Analytics Journal Citation Reports 2020
ABSTRACTING AND INDEXING

Scopus
PubMed/Medline
EM Biology
BIOSIS Citation Index
Biological Abstracts
Chemical Abstracts
Elsevier BIOSBASE
Current Contents - Life Sciences
Embouchure
Pascal Francis
Reference Update
Web of Science

EDITORIAL BOARD

Editor-in-Chief
Samuel H. Wilson, Chapel Hill, NC

Editors Emeritus
Errol C. Friedberg
P.C. Hanawalt

Annual Reviews Editor
Penny A. Jeggo, University of Sussex, Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
DNA damage response to DNA double strand breaks

Editor in Chief

Associate Editors
Keith W. Caldecott, University of Sussex, United Kingdom
Ageing, drug discovery, mitosis, neurodegeneration, proteomics
Jessica A. Downs, The Institute of Cancer Research, United Kingdom
Epigenetics and genome stability
Sue Jinks-Robertson, Duke University, United States
Mechanisms of homologous recombination, transcription and genome stability
Alan R. Lehmann, University of Sussex, United Kingdom
Xeroderma pigmentosum, Cockayne Syndrome, trichothiodystrophy
Guo-Min Li, The University of Texas Southwestern Medical Center Department of Radiation Oncology, United States
DNA mismatch repair, genome instability, cancer, DNA Damage response, epigenetics, histone modifications and mutations, post-translational modifications
Jeffrey H. Miller, University of California Los Angeles, California, United States
Mutation, DNA repair
Marco Muzi Falconi, University of Milan Department of Biomolecular Sciences at Biotechnology, Milan, Italy
Genome integrity, DNA damage checkpoints, initiation of DNA replication
Rodney Rothstein, Columbia University Department of Genetics and Development, United States
Genome stability
Leona D. Samson, Massachusetts Institute of Technology Center for Environmental Health Sciences, United States
Toxigenomics, animal models of DNA repair, DNA repair pathways, Genomic phenotyping, spontaneous mutagenesis, gene environment interactions, structure function relationship
Robert W. Sobol, University of South Alabama, Mitchell Cancer Institute, Molecular and Metabolic Oncology Program, United States
DNA Repair, base excision repair, DNA damage response, ADP-ribose, Poly-ADP-ribose polymerase, DNA polymerases, NAD+ metabolism
Shunichi Takeda, Kyoto University Graduate School of Medicine Faculty of Medicine Department of Radiation Genetics, Japan
Reverse genetics, radiation genetics
Alan Tomkinson, UNIVERSITY OF NEW MEXICO HEALTH SCIENCES CENTER, United States
DNA repair mechanisms
Bennett Van Houten, UNIVERSITY OF PITTSBURGH CANCER INSTITUTE, University of Pittsburgh Cancer Institute, United States
DNA Repair, drug discovery, redox pharmacology, pharmacology of cell and organ systems
Niels de Wind, Leiden University Medical Centre Center for Human and Clinical Genetics, Netherlands
DNA damage responses, mutagenesis, DNA translesion synthesis, DNA mismatch repair
Roger Woodgate, National Institutes of Health, United States
DNA replication, repair, and mutagenesis in eukaryotic and prokaryotic cells

Editorial Board
Haico van Attikum, Leiden University Medical Centre Center for Human and Clinical Genetics, Leiden, Netherlands
Chromatin and DNA repair, systems biology, ubiquitination, chromatin-modifying factors
Christopher J. Bakkenist, Hillman Cancer Center, Sch. of Medicine; Dept. of Radiation Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
Cancer pharmacology, DNA repair, radiation oncology, chemical biology
Thomas J. Begley, University at Albany College of Nanoscale Science and Engineering, Albany, New York, United States
DNA repair, genetic toxicology, environmental health, epitranscriptomics, tRNA modifications and translation
Kara A. Bernstein, University of Pittsburgh Department of Microbiology and Molecular Genetics, Pittsburgh, Pennsylvania, United States
double-strand break repair, homologous recombination, RAD51 regulation
Ashok S. Bhagwat, Wayne State University Department of Chemistry, Detroit, Michigan, United States
Functional genomics
Sukesh R. Bhaumik, Southern Illinois University School of Medicine Department of Biochemistry and Molecular Biology, Carbondale, Illinois, United States
Keywords: Transcription, Chromatin Structure, DNA Repair, and Genomic Instability
Margherita Bignami, National Institute of Health Department of Environment Health and Health, Roma, Italy
Luis Blanco, Autonomous University of Madrid Campus Spanish Research Council Severo Ochoa Molecular Biology Centre, Madrid, Spain
Genome maintenance and variability, enzymology of DNA replication and repair
Linda B. Bloom, University of Florida Department of Biochemistry and Molecular Biology, Gainesville, Florida, United States
DNA replication and repair
Daniel F. Bogenhagen, Stony Brook University Department of Pharmacological Sciences, Stony Brook, New York, United States
Mitochondrial DNA (mtDNA) replication, transcription and repair in animal cells
Wilhelm Bohr, Biomedical Research Center, Lab. of Molecular Gerontology, National Institute of Aging (NIA), Baltimore, Maryland, United States
DNA repair, telomere maintenance, base excision DNA repair, helicase function, aging, neurodegeneration
Serge Boitoux, French Alternative Energies and Atomic Energy Commission Laboratory of Genetic and Molecular Radiobiology, Fontenay aux Roses, France
William M. Bonner, Bethesda, MD, United States
Chromosome biology
Anne Bagg Britt, Life Sciences Addition, room 1002, Dept. of Plant Biology, University of California, Davis, Davis, California, United States
Cell and developmental biology, chromosome biology, environmental and Integrative biology, model plants, molecular biology, biochemistry and genomics
Jaap Brouwer, Leiden Inst. of Chemistry (Scheikunde Universiteit Leiden), Molecular Genetics, Universiteit Leiden, Leiden, Netherlands
Molecular genetics
Sandeep Burma, Div. of Molecular Radiation Biology, Dept. of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, United States
DNA double-strand break repair, mechanisms of repair pathway choice, cell cycle checkpoint signaling, genomic instability and cancer development, targeting DNA repair pathways for cancer therapy
Antony M. Carr, University of Sussex, Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
Genome stability
David J. Chen, Div. of Molecular Radiation Biology, Dept. of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, United States
DNA repair and nuclear organization
Dipanjan Chowdhury, Harvard Medical School, Boston, MA, United States
DNA double strand break repair, phosphatase, non-coding RNA
Andrew R. Collins, Fac. of Medicine, Dept. of Nutrition, University of Oslo, Oslo, Norway
Comet Assay, DNA damage and mutagenesis, nutrition and cancer, DNA repair in mammalian cells, human biomonitoring; molecular epidemiology

Priscilla K. Cooper, E O Lawrence Berkeley National Laboratory, Berkeley, California, United States

Richard P. Cunningham, University at Albany Department of Biological Sciences, Albany, New York, United States
Biochemistry of DNA repair enzymes, DNA repair in bacteria, structure and function of DNA nucleases, structure and function of DNA glycosylases, genetic and systems analysis of DNA repair pathways

Alan D'Andrea, Dept. of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States
Cancer susceptibility, Fanconi anemia, gene therapy, genetic risk

Sheila S. David, University of California Davis Department of Chemistry, Davis, California, United States
DNA repair enzymes

Bruce Demple, Stony Brook University Department of Pharmacological Sciences, Stony Brook, New York, United States
Biochemical and biological functions of repair pathways for oxidative DNA damage

Grigory Dianov, Gray Institute for Radiation Oncology and Biology, Oxford, United Kingdom
DNA damage recognition, DNA damage signalling, DNA repair, G1 DNA damage checkpoint, DNA damage response regulation, cancer

Paul Doetsch, Atlanta, Georgia, United States
DNA damage repair, radiation biology, genetic and genomic instability, mechanism of action of DNA targeting antitumor agents

Eugenia Dogliotti, National Institute of Health Department of Environment Health and Health, Roma, Italy
Genome stability, DNA repair and replication, mutagenesis in cancer

Bevin P. Engelward, Massachusetts Institute of Technology Department of Biological Engineering, Cambridge, Massachusetts, United States
Carcinogenesis, toxicology

Paula L. Fischhaber, California State University Northridge Department of Chemistry and Biochemistry, Northridge, California, United States
Protein biochemistry of DNA repair

Richard Fisher, Molecular Virology, Immunology & Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States
Biophysical mechanisms, genetics, regulation, and consequences of DNA repair and genome rearrangement in human cells

Robert P. Fuchs, Cancer Research Centre Marseille, Marseille, France
Replication of damaged DNA, DNA polymerases, translesion synthesis, mutagenesis, DNA damage response

Ann Ganesan, Stanford University Department of Biology, Stanford, California, United States
Genomic maintenance, transcription-coupled DNA repair in prokaryotes

Jean Gautier, Columbia University Irving Medical Center, New York, New York, United States
Maintenance of genome stability

Dik C. van Gent, Erasmus Medisch Centrum, Dept. of Cell Biology & Genetics (Celbiologie & Genetica), Erasmus Universiteit, Rotterdam, Netherlands
Non-homologous end-joining, BRCA1, BRCA2, PARP inhibitors, breast cancer, ovarian cancer

Aaron Goodarzi, Fac. of Medicine, Dept. of Cardiac Surgery, University of Calgary, Calgary, Alberta, Canada
Ionizing Radiation, DNA repair, Chromatin Dynamics, DNA double strand break, Non-Homologous End-Joining, Alpha Particle, ATM, CHD3, CHD6

Myron F. Goodman, University of Southern California Section of Molecular and Computational Biology, Los Angeles, California, United States
Molecular basis of mutagenesis, DNA replication fidelity, DNA repair, nucleotide metabolism enzymes

Nora Goosen, Leiden Inst. of Chemistry (Scheikunde Universiteit Leiden), Molecular Genetics, Universiteit Leiden, Leiden, Netherlands
Mutagenesis, Bacterial genetics

Arthur P. Grollman, Stony Brook University Department of Pharmacological Sciences, Stony Brook, New York, United States
Molecular carcinogenesis, mechanisms of DNA repair and mutagenesis in mammalian cells

James E. Haber, Rosenstiel Basic Medical Sciences Research Center, Waltham, Massachusetts, United States
Homologous recombination, nonhomologous end-joining and repair, cell cycle regulation in response to DNA damage

Thanos D. Halazonetis, Sciences III, Dept. de Biologie Moléculaire (Dept. of Molecular Biology), Université de Genève, Geneva, Switzerland
DNA replication stress in cancer

Fumio Hanaoka, National Institute of Genetics, Mishima, Japan
Genome maintenance, translesion DNA synthesis, TLS polymerases, nucleotide excision repair,
Ian D. Hickson, University of Copenhagen Department of Cellular and Molecular Medicine, København, Denmark
DNA repair in eukaryotic cells, chromosome stability

Jan H. Hoeijmakers, Erasmus Medisch Centrum, Dept. of Cell Biology & Genetics (Celbiologie & Genetica), Erasmus Universiteit, Rotterdam, Netherlands
Mechanism of nucleotide excision repair

Jun Huang, Zhejiang University, Hangzhou, China
Mechanism of nucleotide excision repair

Trey Ideker, University of California San Diego, La Jolla, California, United States
Systems biology

Steve P. Jackson, Gurdon Institute, Cambridge, United Kingdom
DNA Repair, genomic DNA instability and cancer

Bernd Kaina, University of Mainz Institute of Toxicology, Mainz, Germany
DNA repair, apoptosis

Roland Kanaar, Erasmus Medisch Centrum, Dept. of Cell Biology & Genetics (Celbiologie & Genetica), Erasmus Universiteit, Rotterdam, Netherlands
DNA damage response

Patricia Kannonouche, CNRS Université Paris-XI,FRE 2939 Stabilité génétique et oncogenèse, Institut Gustave Roussy, Villejuif, France
Translesion DNA synthesis

Nayun Kim, Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States
Mechanisms of mutagenesis and chromosomes rearrangements in Saccharomyces cerevisiae.

Caroline Kisker, Inst. for Structural Biology, Rudolf-Virchow-Zentrum für Experimentelle Biomedizin, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
Nucleotide excision repair, helicases, structure-based-drug design, structural biology

Hannah Klein, New York University Department of Biochemistry and Molecular Pharmacology, New York, New York, United States
Pathways of DNA damage avoidance, DNA repair and recombination, genomic instability, DNA damage checkpoints, cancer

Arne Klungland, Oslo University Hospital, Oslo, Norway
Modifications in DNA and RNA

Richard Kolodner, Howard Hughes Medical Institute - University of California San Diego School of Medicine, San Diego, California, United States
Genome instability in cancer

Daochun Kong, Peking University School of Life Sciences, Beijing, China
DNA replication, replication fork stability, repair of dsDNA breaks in eukaryotes

Steve Kowalczykowski, University of California Davis Department of Microbiology and Molecular Genetics, Davis, California, United States
Genetic recombination, DNA helicases, protein-nucleic acid interactions

Thomas A. Kunkel, National Institute of Health (NIH), Lab. of Molecular Genetics, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina, United States
Genome integrity, structural Biology, DNA replication fidelity

Robert S. Lahue, Ctr. for Chromosome Biology, Scl. of Natural Sciences, National University of Ireland, Galway, Ireland
Mismatch repair, mutagenesis, trinucleotide repeat expansion, MutS homologs, MutL homologs, neurological disease

Susan LeDoux, College of Medicine, Dept. of Cell Biology and Neuroscience, University of South Alabama, Mobile, Alabama, United States

Susan Lees-Miller, University of Calgary Department of Biochemistry and Molecular Biology, Calgary, Alberta, Canada
Molecular biology and disease, cell signalling and structure

Michael Leffak, Wright State University Department of Biochemistry and Molecular Biology, Dayton, Ohio, United States
Structural biology, DNA replication

Randy Legerski, UNIVERSITY OF TEXAS MD ANDERSON CANCER CENTER, Houston, Texas, United States
DNA double-strand breaks roles in human cancer, aging, and the immune system

Stuart Linn, University of California Berkeley Department of Molecular and Cell Biology, Berkeley, California, United States
Enzymes and DNA binding proteins involved in DNA damage responses, DNA repair and replication in mammalian cells. Dosimetry and signaling for the DNA damage response. DNA polymerases. Generation of DNA damage by reactive oxygen species (ROS).

Michael Lisby, University of Copenhagen Department of Biology, København, Denmark
Homologous recombination, yeast Saccharomyces cerevisiae, protein quality control, DNA replication stress, telomere maintenance, nuclear organisation, DNA repair foci, DNA anaphase bridges

R. Michael Liskay, Oregon Health & Science University, Portland, Oregon, United States
DNA mismatch repair

Mats Ljungman, University of Michigan Department of Radiation Oncology, Ann Arbor, Michigan, United States
Transcription, epigenetics, DNA damage responses, cancer biology, radiation biology

R. Stephen Lloyd, Oregon Health & Science University Oregon Institute of Occupational Health Sciences, Portland, Oregon, United States
Molecular mechanisms of DNA repair

Lawrence A. Loeb, University of Washington Department of Pathology, Seattle, Washington, United States
Mutagenesis, cancer

Maria Pia Longhese, University of Bari Department of Bioscience Biotechnology and Biopharmaceutics, Bari, Italy

Xinghua Lu, University of Pittsburgh Department of Biomedical Informatics, Pittsburgh, Pennsylvania, United States
Translational bioinformatics and systems/computational biology, natural language processing and text mining

Katheryn Meek, College of Veterinary Medicine, DCPAH,Dept. of Pathobiology and Diagnostic Investigation (PDI),Michigan State University, East Lansing, Michigan, United States
DNA repair, serine/threonine protein kinases

Isabel Mellon, University of Kentucky Department of Toxicology and Cancer Biology, Lexington, Kentucky, United States
DNA repair mechanisms

Carlos F. M. Menck, University of São Paulo Department of Microbiology, São Paulo, Brazil
DNA repair, Translesion synthesis, ultraviolet, mutagenesis, chemotherapy

Joel Meyer, Duke University Nicholas School of the Environment, Durham, North Carolina, United States
Environmental genotoxicants, mitochondrial DNA, mitophagy, Caenorhabditis elegans

Sankar Mitra, Houston Methodist Research Institute, Houston, Texas, United States
Oxidative damage in mammalian genome and its linkage to transcription and involvement of non-canonical factors, microhomology-mediated end-joining of DNA double-strand breaks in tumor cells

Hanspeter Nägeli, University of Zurich Institute of Pharmacology and Toxicology, Zurich, Switzerland
Nucleotide excision repair

Yusaku Nakabeppu, Kyushu University Medical Institute of Bioregulation, Fukuoka, Japan
Reactive oxygen species

Alain Nicolas, Recombination and Genetic Instability, Paris, France
Replication, DNA repair, genome instability, genomics and human genetics

Matthew J. O'Connell, Icahn School of Medicine at Mount Sinai, New York, New York, United States
Cell cycle regulation, genomic stability, chromosome dynamics

Roderick J. O'Sullivan, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, United States
Cancer pharmacology, DNA repair

Patricia Opresko, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
DNA damage response in eukaryotic cells

Tanya T. Paull, The University of Texas at Austin Department of Molecular Biosciences, Austin, Texas, United States
DNA topoisomerase biology and biochemistry

Fred W. Perrino, Dept. of Internal Medicine, Sch. of Medicine, Wake Forest University, Winston-Salem, North Carolina, United States
Biochemistry of DNA and RNA in human disease

Yves G. Pommier, National Cancer Institute (NCI), Molecular Mechanisms Section, Bethesda, Maryland, United States
DNA double-strand breaks

Brendan Price, Div. of Genome Stability and DNA Repair,Dept. of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States
DNA topoisomerase biology and biochemistry

Eric Radany, City of Hope National Medical Center Division of Head and Neck Surgery, Duarte, California, United States
Radiation oncology, radiobiology

Vesna Rapic-Otrin, Dept. of Microbiology and Molecular Genetics, Hillman Cancer Center, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, United States
Nucleotide excision repair

Simon Reed, Cardiff University Section of Pathology, Cardiff, United Kingdom
Genome Instability

Michael A. Resnick, National Institute of Health (NIH), Lab. of Molecular Genetics, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina, United States
Genome stability, environmental factors, stress-signaling
Susan M. Rosenberg, Baylor College of Medicine Department of Molecular and Human Genetics, Houston, Texas, United States
Genome instability in evolution, antibiotic resistance, and cancer

Rabindra Roy, Georgetown University Medical Center Lombardi Comprehensive Cancer Center Dept. of Oncology, Washington, District of Columbia, United States
DNA repair

Julian E. Sale, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
DNA replication, DNA repair, translesion synthesis, DNA polymerases, DNA secondary structures, G quadruplexes, epigenetics

Roger A. Schultz, The University of Texas Southwestern Medical Center Department of Neuroscience, Dallas, Texas, United States
Cytogenetics, DNA repair, cancer, genome stability

Binghui Shen, Beckman Research Institute Department of Cancer Genetics and Epigenetics, Duarte, California, United States
FEN1, DNA2, DNA Replication, DNA Repair, Cancer Biology DNA damage responses, genome integrity, protein posttranslational modifications, cancer genetics and epigenetics

Zhiyuan Shen, Dept. of Radiation Oncology, Rutgers Cancer Inst. of NJ, Rutgers University, New Brunswick, New Jersey, United States
Mechanisms of genomic instability, replication stress, tumorigenesis, mitosis

Yosef Shiloh, Sackler School of Medicine, Dept. of Human Molecular Genetics and Biochemistry, Tel Aviv University, Tel Aviv, Israel
Genome instability in human morbidity and aging

Hideo Shinagawa, Osaka University Research Institute for Microbial Diseases, Osaka, Japan
Grant S. Stewart, Cancer Research UK Inst. for Cancer Studies, Sch. of Cancer Sciences, University of Birmingham, Birmingham, United Kingdom
DNA repair

Phyllis Strauss, Northeastern University Department of Biology, Boston, Massachusetts, United States
DNA repair, AP endonuclease

Kaoru Sugasaki, Kobe University Biosignal Research Center, Kobe, Japan
Signal transduction, DNA repair

Patrick Sung, Yale University Department of Molecular Biophysics and Biochemistry, New Haven, Connecticut, United States

Jesper Svejstrup, Clare Hall Lab, London Research Inst., Cancer Research UK, Herts, United Kingdom
Transcription, DNA replication and repair

Joann Sweasy, Yale University Department of Therapeutic Radiology, New Haven, Connecticut, United States
Mutagenesis, autoimmunity, genomic instability, DNA damage, DNA repair

Kiyooji Tanaka, Dept. of Cardiology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
DNA repair pathways, proteomics, markers of chemotherapeutic responsiveness

Helle D. Ulrich, Institute of Molecular Biology, Mainz, Germany
Ubiquitin, SUMO, polyubiquitin chains, ubiquitin protein ligases (E3), ubiquitin-conjugating enzymes (E2), DNA repair, DNA replication, DNA replication stress, DNA damage response, mutagenesis, genome stability, yeast genetics, biochemistry

Harry Van Steeg, National Institute for Public Health and the Environment, Bilthoven, Netherlands
DNA repair, aging, biological clock

Karen M. Vasquez, The University of Texas at Austin Department of Pharmacology and Toxicology, Austin, Texas, United States
DNA damage and repair, genomic instability, gene targeting, DNA structure, cancer therapeutics

Ashok R. Venkitaraman, University of Cambridge Department of Oncology, Cambridge, United Kingdom
Chromosomal instability in cancer pathogenesis and treatment

Wim Vermeulen, Erasmus Medisch Centrum, Dept. of Cell Biology & Genetics (Celbiologie & Genetica), Erasmus Universiteit, Rotterdam, Netherlands
Molecular mechanisms of DNA repair, genome stability in cancer

Harry Vrieling, Fac. der Geneeskunde, Divisie 5, Toxicogenetica, Universiteit Leiden, Leiden, Netherlands
Toxicogenomics

Geoffrey M. Wahl, Salk Institute for Biological Studies, La Jolla, California, United States
Gene expression, cancer

Graham C. Walker, Massachusetts Institute of Technology Department of Biology, Cambridge, Massachusetts, United States
Mutagenesis, translesion synthesis, TLS DNA polymerases, cellular responses to DNA damage, oxidative stress
Hailin Wang, Research Center for Eco-Environmental Sciences, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Chinese Academy of Sciences (CAS), Beijing, China
Homologous recombination, RecA, Rad51, single stranded binding protein, DNA damage detection, ultrasensitive assay, single molecule fluorescence study, protein-DNA interaction, protein assembly and disassembly

Zhigang Wang, University of Kentucky Department of Toxicology and Cancer Biology, Lexington, Kentucky, United States
DNA damage-induced mutagenesis, DNA excision repair

Stephen C. West, Francis Crick Institute, London, United Kingdom
Mechanisms of genetic recombination, DNA strand break repair

Guo-Liang Xu, Shanghai Institute of Biochemistry and Cell Biology, Shanghai, China
Base excision repair, deamination, DNA demethylation, epigenetics

Xingzhi (Xavier) Xu, Shenzhen University College of Medicine, Shenzhen, China
DNA damage response, DNA double strand break, DNA replication, replication stress, post-translational modifications, ubiquitination, UFMylation.

Yun-Gui Yang, Beijing Institute of Genomics Chinese Academy of Sciences, Beijing, China
RNA epigenetics

Hongfeng Yuan, Beckman Research Institute of the City of Hope Department of Cancer Biology, Duarte, California, United States

Virginia Zakian, Princeton University Department of Molecular Biology, Princeton, New Jersey, United States
DNA replication and chromosome structure in yeast; telomeres; replication fork progression

Yanbin Zhang, University of Miami Department of Biochemistry and Molecular Biology, Miami, Florida, United States
DNA interstrand crosslink repair, double strand break repair, mismatch repair, translesion synthesis, genome instability, Fanconi anemia, cancer, biochemistry, genetics

Wei-Guo Zhu, Department of Biochemistry and Molecular Biology Shenzhen University School of Medicine, Shenzhen, China
Histone modifications, DNA damage repair, Epigenetics, Tumor Suppressor
GUIDE FOR AUTHORS

Your Paper Your Way
We now differentiate between the requirements for new and revised submissions. You may choose to submit your manuscript as a single Word or PDF file to be used in the refereeing process. Only when your paper is at the revision stage, will you be requested to put your paper in to a 'correct format' for acceptance and provide the items required for the publication of your article. To find out more, please visit the Preparation section below.

INTRODUCTION
DNA Repair provides a forum for the comprehensive coverage of DNA repair and cellular responses to DNA damage. The journal publishes original observations on genetic, cellular, biochemical, structural and molecular aspects of DNA repair, mutagenesis, cell cycle regulation, apoptosis and other biological responses in cells exposed to genomic insult, as well as their relationship to human disease.

Please note the new 'Graphical abstract' and 'Research highlights' features under the 'PREPARATION' section of the DNA Repair Guide for Authors.

Authors are required to disclose in their cover letter if their manuscript has been previously posted on a preprint server. Please note that preprints can be shared anywhere at any time, in line with Elsevier's sharing policy. Sharing your preprints e.g. on a preprint server will not count as prior publication (see 'Multiple, redundant or concurrent publication' for more information).

Types of Paper
DNA Repair publishes full-length research articles, brief reports on research, and reviews. The journal welcomes articles describing databases, methods and new technologies supporting research on DNA repair and responses to DNA damage. Letters to the Editor, hot topics and classics in DNA repair, historical reflections, book reviews and meeting reports also will be considered for publication.

DNA Repair also publishes Graphical Reviews (GRs). A GR is a short, structured article type, which primarily use illustrative schematic summaries to convey only key concepts and novel ideas on a major research interest in the lab. GRs present an opportunity to succinctly showcase your research contributions within a wider overview of recent developments within a field. GRs are designed to communicate information in a visually appealing representation of the current state of research on a specific topic. The overall message should be accessible to a broad scientific audience. GRs have a format of 3-5 (color) schemes/figures, ideally formatted as easily downloadable (PowerPoint) slides or the like, for use by readers for educational purposes. The text body should provide the reader with 'backbone' information and context, connecting the material presented in the figures. GRs cannot include unpublished data, new hypotheses, formal mathematical models, or meta-analysis.

GR article structure: Abstract: up to 250 words Body (exclusive of figure legends): up to 2000 words, double-spaced, Arial font, size 11 3-5 color schemes/figures summarizing the state of the specific topic covered. Each figure needs to be self-explanatory, including sufficient annotations to allow the readers to quickly grasp the content of the figure. Figure legends must be straight to the point, providing additional details which deepen the message of the figure itself. Please ensure that the reader, who may not be a direct expert in the field, can easily grasp the information provided. References: no more than 25 key articles that exemplify the most significant recent advances in the field. Illustrations: Authors are expected to use their own illustration resources. They may also make use of Elsevier’s Illustration Services to ensure the best presentation of their images, in accordance with all technical requirements.

An example of GR is available here

Paper Requirements:

All articles should be prepared as outlined in this Guide - with the exception of the following:
Brief Communication: No more than 3000 words (excluding references) - no more than 3 supplementary figures and/or tables can be included in a manuscript.

Book Review

Correspondence to the Editor

Historical Reflections

Meeting Report

Submission checklist

You can use this list to carry out a final check of your submission before you send it to the journal for review. Please check the relevant section in this Guide for Authors for more details.

Ensure that the following items are present:

One author has been designated as the corresponding author with contact details:
- E-mail address
- Full postal address

All necessary files have been uploaded:

Manuscript:
- Include keywords
- All figures (include relevant captions)
- All tables (including titles, description, footnotes)
- Ensure all figure and table citations in the text match the files provided
- Indicate clearly if color should be used for any figures in print

Graphical Abstracts / Highlights files (where applicable)

Supplemental files (where applicable)

Further considerations
- Manuscript has been 'spell checked' and 'grammar checked'
- All references mentioned in the Reference List are cited in the text, and vice versa
- Permission has been obtained for use of copyrighted material from other sources (including the Internet)
- A competing interests statement is provided, even if the authors have no competing interests to declare
- Journal policies detailed in this guide have been reviewed
- Referee suggestions and contact details provided, based on journal requirements

For further information, visit our Support Center.

BEFORE YOU BEGIN

Ethics in publishing

Please see our information pages on Ethics in publishing and Ethical guidelines for journal publication.

Conflict of Interest

All authors are requested to disclose any actual or potential conflict of interest including any financial, personal or other relationships with other people or organizations within three years of beginning the submitted work that could inappropriately influence, or be perceived to influence, their work. See also https://www.elsevier.com/conflictsofinterest.

DNA Repair requires full disclosure of all potential conflicts of interest. At the end of the manuscript text (and in the cover letter of the manuscript), under a subheading "Conflict of Interest statement", all authors must disclose any financial and personal relationships with other people or organisations that could inappropriately influence (bias) their work. If there are no conflicts of interest, the authors should state, "The authors declare that there are no conflicts of interest." Signed copies of the DNA Repair Conflict of Interest policy form are required upon submission. The Conflict of Interest policy form can be downloaded here. In order to minimize delays, we strongly advise that the signed copies of these statements are prepared before you submit your manuscript. The corresponding author is responsible for sharing this document with all co-authors. Each and every co-author must sign an individual disclosure form. The corresponding author is responsible for uploading their form and those of their co-authors.
Submission declaration and verification
Submission of an article implies that the work described has not been published previously (except in the form of an abstract or as part of a published lecture or academic thesis, see 'Multiple, redundant or concurrent publication' section of our ethics policy for more information), that it is not under consideration for publication elsewhere, that its publication is approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out, and that, if accepted, it will not be published elsewhere in the same form, in English or in any other language, including electronically without the written consent of the copyright-holder. To verify originality, your article may be checked by the originality detection service CrossCheck.

Use of inclusive language
Inclusive language acknowledges diversity, conveys respect to all people, is sensitive to differences, and promotes equal opportunities. Content should make no assumptions about the beliefs or commitments of any reader; contain nothing which might imply that one individual is superior to another on the grounds of age, gender, race, ethnicity, culture, sexual orientation, disability or health condition; and use inclusive language throughout. Authors should ensure that writing is free from bias, stereotypes, slang, reference to dominant culture and/or cultural assumptions. We advise to seek gender neutrality by using plural nouns ("clinicians, patients/clients") as default/wherever possible to avoid using "he, she," or "he/she." We recommend avoiding the use of descriptors that refer to personal attributes such as age, gender, race, ethnicity, culture, sexual orientation, disability or health condition unless they are relevant and valid. These guidelines are meant as a point of reference to help identify appropriate language but are by no means exhaustive or definitive.

Author contributions
For transparency, we encourage authors to submit an author statement file outlining their individual contributions to the paper using the relevant CRediT roles: Conceptualization; Data curation; Formal analysis; Funding acquisition; Investigation; Methodology; Project administration; Resources; Software; Supervision; Validation; Visualization; Roles/Writing - original draft; Writing - review & editing. Authorship statements should be formatted with the names of authors first and CRediT role(s) following. More details and an example

Changes to authorship
Authors are expected to consider carefully the list and order of authors before submitting their manuscript and provide the definitive list of authors at the time of the original submission. Any addition, deletion or rearrangement of author names in the authorship list should be made only before the manuscript has been accepted and only if approved by the journal Editor. To request such a change, the Editor must receive the following from the corresponding author: (a) the reason for the change in author list and (b) written confirmation (e-mail, letter) from all authors that they agree with the addition, removal or rearrangement. In the case of addition or removal of authors, this includes confirmation from the author being added or removed.
Only in exceptional circumstances will the Editor consider the addition, deletion or rearrangement of authors after the manuscript has been accepted. While the Editor considers the request, publication of the manuscript will be suspended. If the manuscript has already been published in an online issue, any requests approved by the Editor will result in a corrigendum.

Copyright
Upon acceptance of an article, authors will be asked to complete a 'Journal Publishing Agreement' (see more information on this). An e-mail will be sent to the corresponding author confirming receipt of the manuscript together with a 'Journal Publishing Agreement' form or a link to the online version of this agreement.

Subscribers may reproduce tables of contents or prepare lists of articles including abstracts for internal circulation within their institutions. Permission of the Publisher is required for resale or distribution outside the institution and for all other derivative works, including compilations and translations. If excerpts from other copyrighted works are included, the author(s) must obtain written permission from the copyright owners and credit the source(s) in the article. Elsevier has preprinted forms for use by authors in these cases.

For gold open access articles: Upon acceptance of an article, authors will be asked to complete an 'Exclusive License Agreement' (more information). Permitted third party reuse of gold open access articles is determined by the author's choice of user license.
Author rights
As an author you (or your employer or institution) have certain rights to reuse your work. More information.

Elsevier supports responsible sharing
Find out how you can share your research published in Elsevier journals.

Role of the funding source
You are requested to identify who provided financial support for the conduct of the research and/or preparation of the article and to briefly describe the role of the sponsor(s), if any, in study design; in the collection, analysis and interpretation of data; in the writing of the report; and in the decision to submit the article for publication. If the funding source(s) had no such involvement then this should be stated.

Open access
Please visit our Open Access page for more information.

Elsevier Researcher Academy
Researcher Academy is a free e-learning platform designed to support early and mid-career researchers throughout their research journey. The "Learn" environment at Researcher Academy offers several interactive modules, webinars, downloadable guides and resources to guide you through the process of writing for research and going through peer review. Feel free to use these free resources to improve your submission and navigate the publication process with ease.

Language (usage and editing services)
Please write your text in good English (American or British usage is accepted, but not a mixture of these). Authors who feel their English language manuscript may require editing to eliminate possible grammatical or spelling errors and to conform to correct scientific English may wish to use the English Language Editing service available from Elsevier's Author Services.

Submission
Our online submission system guides you stepwise through the process of entering your article details and uploading your files. The system converts your article files to a single PDF file, which is used in the peer-review process. As part of the Your Paper Your Way service, you may choose to submit your manuscript as a single file to be used in the refereeing process. This can be a PDF file or a Word document, in any format or layout that can be used by referees to evaluate your manuscript. It should contain high enough quality figures for refereeing. If you prefer to do so, you may still provide all or some of the source files at the initial submission. Please note that individual figure files larger than 10 MB must be uploaded separately.

References
There are no strict requirements on reference formatting at submission. References can be in any style or format as long as the style is consistent. Where applicable, author(s) name(s), journal title/book title, chapter title/article title, year of publication, volume number/book chapter and the article number or pagination must be present. Use of DOI is highly encouraged. The reference style used by the journal will be applied to the accepted article by Elsevier at the proof stage. Note that missing data will be highlighted at proof stage for the author to correct.
Formatting requirements

There are no strict formatting requirements but all manuscripts must contain the essential elements needed to convey your manuscript, for example Abstract, Keywords, Introduction, Materials and Methods, Results, Conclusions, Artwork and Tables with Captions. If your article includes any Videos and/or other Supplementary material, this should be included in your initial submission for peer review purposes. Divide the article into clearly defined sections.

Figures and tables embedded in text

Please ensure the figures and the tables included in the single file are placed next to the relevant text in the manuscript, rather than at the bottom or the top of the file. The corresponding caption should be placed directly below the figure or table.

Peer review

This journal operates a single blind review process. All contributions will be initially assessed by the editor for suitability for the journal. Papers deemed suitable are then typically sent to a minimum of two independent expert reviewers to assess the scientific quality of the paper. The Editor is responsible for the final decision regarding acceptance or rejection of articles. The Editor's decision is final. More information on types of peer review.

REVISED SUBMISSIONS

Use of word processing software

Regardless of the file format of the original submission, at revision you must provide us with an editable file of the entire article. Keep the layout of the text as simple as possible. Most formatting codes will be removed and replaced on processing the article. The electronic text should be prepared in a way very similar to that of conventional manuscripts (see also the Guide to Publishing with Elsevier). See also the section on Electronic artwork.

To avoid unnecessary errors you are strongly advised to use the 'spell-check' and 'grammar-check' functions of your word processor.

Article structure

Subdivision - numbered sections

Divide your article into clearly defined and numbered sections. Subsections should be numbered 1.1 (then 1.1.1, 1.1.2, ...), 1.2, etc. (the abstract is not included in section numbering). Use this numbering also for internal cross-referencing: do not just refer to 'the text'. Any subsection may be given a brief heading. Each heading should appear on its own separate line.

Introduction

State the objectives of the work and provide an adequate background, avoiding a detailed literature survey or a summary of the results.

Material and methods

Provide sufficient details to allow the work to be reproduced by an independent researcher. Methods that are already published should be summarized, and indicated by a reference. If quoting directly from a previously published method, use quotation marks and also cite the source. Any modifications to existing methods should also be described.

Results

Results should be clear and concise.

Discussion

This should explore the significance of the results of the work, not repeat them. A combined Results and Discussion section is often appropriate. Avoid extensive citations and discussion of published literature.

Conclusions

The main conclusions of the study may be presented in a short Conclusions section, which may stand alone or form a subsection of a Discussion or Results and Discussion section.

Appendices

If there is more than one appendix, they should be identified as A, B, etc. Formulae and equations in appendices should be given separate numbering: Eq. (A.1), Eq. (A.2), etc.; in a subsequent appendix, Eq. (B.1) and so on. Similarly for tables and figures: Table A.1; Fig. A.1, etc.
Essential title page information

- **Title.** Concise and informative. Titles are often used in information-retrieval systems. Avoid abbreviations and formulae where possible.
- **Author names and affiliations.** Please clearly indicate the given name(s) and family name(s) of each author and check that all names are accurately spelled. You can add your name between parentheses in your own script behind the English transliteration. Present the authors' affiliation addresses (where the actual work was done) below the names. Indicate all affiliations with a lower-case superscript letter immediately after the author's name and in front of the appropriate address. Provide the full postal address of each affiliation, including the country name and, if available, the e-mail address of each author.
- **Corresponding author.** Clearly indicate who will handle correspondence at all stages of refereeing and publication, also post-publication. This responsibility includes answering any future queries about Methodology and Materials. **Ensure that the e-mail address is given and that contact details are kept up to date by the corresponding author.**
- **Present/permanent address.** If an author has moved since the work described in the article was done, or was visiting at the time, a 'Present address' (or 'Permanent address') may be indicated as a footnote to that author's name. The address at which the author actually did the work must be retained as the main, affiliation address. Superscript Arabic numerals are used for such footnotes.

Highlights

Highlights are mandatory for this journal as they help increase the discoverability of your article via search engines. They consist of a short collection of bullet points that capture the novel results of your research as well as new methods that were used during the study (if any). Please have a look at the examples here: example Highlights.

Highlights should be submitted in a separate editable file in the online submission system. Please use 'Highlights' in the file name and include 3 to 5 bullet points (maximum 85 characters, including spaces, per bullet point).

Abstract

A concise and factual abstract is required. The abstract should state briefly the purpose of the research, the principal results and major conclusions. An abstract is often presented separately from the article, so it must be able to stand alone. For this reason, References should be avoided, but if essential, then cite the author(s) and year(s). Also, non-standard or uncommon abbreviations should be avoided, but if essential they must be defined at their first mention in the abstract itself. Abstract should not exceed 300 words.

Graphical abstract

Although a graphical abstract is optional, its use is encouraged as it draws more attention to the online article. The graphical abstract should summarize the contents of the article in a concise, pictorial form designed to capture the attention of a wide readership. Graphical abstracts should be submitted as a separate file in the online submission system. Image size: Please provide an image with a minimum of 531 × 1328 pixels (h × w) or proportionally more. The image should be readable at a size of 5 × 13 cm using a regular screen resolution of 96 dpi. Preferred file types: TIFF, EPS, PDF or MS Office files. You can view Example Graphical Abstracts on our information site. Authors can make use of Elsevier's Illustration Services to ensure the best presentation of their images and in accordance with all technical requirements.

Keywords

Immediately after the abstract, provide a maximum of 6 keywords, using American spelling and avoiding general and plural terms and multiple concepts (avoid, for example, 'and', 'of'). Be sparing with abbreviations: only abbreviations firmly established in the field may be eligible. These keywords will be used for indexing purposes.

Abbreviations

Define abbreviations that are not standard in this field in a footnote to be placed on the first page of the article. Such abbreviations that are unavoidable in the abstract must be defined at their first mention there, as well as in the footnote. Ensure consistency of abbreviations throughout the article.
Acknowledgements
Collate acknowledgements in a separate section at the end of the article before the references and do not, therefore, include them on the title page, as a footnote to the title or otherwise. List here those individuals who provided help during the research (e.g., providing language help, writing assistance or proof reading the article, etc.).

Formatting of funding sources
List funding sources in this standard way to facilitate compliance to funder's requirements:

Funding: This work was supported by the National Institutes of Health [grant numbers xxxx, yyyy]; the Bill & Melinda Gates Foundation, Seattle, WA [grant number zzzz]; and the United States Institutes of Peace [grant number aaaa].

It is not necessary to include detailed descriptions on the program or type of grants and awards. When funding is from a block grant or other resources available to a university, college, or other research institution, submit the name of the institute or organization that provided the funding.

If no funding has been provided for the research, please include the following sentence:

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Nomenclature
Authors are requested to adopt the nomenclature system for human gene mutations recommended by the HUGO MDI Nomenclature Working Group. Guidelines for this system can be found at http://journals.wiley.com/1059-7794/nomenclature.html.

Footnotes
Footnotes should be used sparingly. Number them consecutively throughout the article. Many word processors build footnotes into the text, and this feature may be used. Should this not be the case, indicate the position of footnotes in the text and present the footnotes themselves separately at the end of the article.

Artwork
Electronic artwork
General points
• Make sure you use uniform lettering and sizing of your original artwork.
• Preferred fonts: Arial (or Helvetica), Times New Roman (or Times), Symbol, Courier.
• Number the illustrations according to their sequence in the text.
• Use a logical naming convention for your artwork files.
• Indicate per figure if it is a single, 1.5 or 2-column fitting image.
• For Word submissions only, you may still provide figures and their captions, and tables within a single file at the revision stage.
• Please note that individual figure files larger than 10 MB must be provided in separate source files.

A detailed guide on electronic artwork is available.

You are urged to visit this site; some excerpts from the detailed information are given here.

Formats
Regardless of the application used, when your electronic artwork is finalized, please 'save as' or convert the images to one of the following formats (note the resolution requirements for line drawings, halftones, and line/halftone combinations given below):
EPS (or PDF): Vector drawings. Embed the font or save the text as 'graphics'.
TIFF (or JPG): Color or grayscale photographs (halftones): always use a minimum of 300 dpi.
TIFF (or JPG): Bitmapped line drawings: use a minimum of 1000 dpi.
TIFF (or JPG): Combinations bitmapped line/half-tone (color or grayscale): a minimum of 500 dpi is required.

Please do not:
• Supply files that are optimized for screen use (e.g., GIF, BMP, PICT, WPG); the resolution is too low.
• Supply files that are too low in resolution.
• Submit graphics that are disproportionately large for the content.
Color artwork
Please make sure that artwork files are in an acceptable format (TIFF (or JPEG), EPS (or PDF), or MS Office files) and with the correct resolution. If, together with your accepted article, you submit usable color figures then Elsevier will ensure, at no additional charge, that these figures will appear in color on the Web (e.g., ScienceDirect and other sites) and in the printed version (unless you specify otherwise). Please indicate your preference for color: in print and on the Web, or on the Web only. For further information on the preparation of electronic artwork, please see https://www.elsevier.com/artworkinstructions.

Please note: Because of technical complications which can arise by converting color figures to 'gray scale' (for the printed version should you not opt for color in print) please submit in addition usable black and white versions of all the color illustrations.

Figure captions
Ensure that each illustration has a caption. A caption should comprise a brief title (not on the figure itself) and a description of the illustration. Keep text in the illustrations themselves to a minimum but explain all symbols and abbreviations used.

Tables
Please submit tables as editable text and not as images. Tables can be placed either next to the relevant text in the article, or on separate page(s) at the end. Number tables consecutively in accordance with their appearance in the text and place any table notes below the table body. Be sparing in the use of tables and ensure that the data presented in them do not duplicate results described elsewhere in the article. Please avoid using vertical rules and shading in table cells.

References
Citation in text
Please ensure that every reference cited in the text is also present in the reference list (and vice versa). Any references cited in the abstract must be given in full. Unpublished results and personal communications are not recommended in the reference list, but may be mentioned in the text. If these references are included in the reference list they should follow the standard reference style of the journal and should include a substitution of the publication date with either 'Unpublished results' or 'Personal communication'. Citation of a reference as 'in press' implies that the item has been accepted for publication.

Reference links
Increased discoverability of research and high quality peer review are ensured by online links to the sources cited. In order to allow us to create links to abstracting and indexing services, such as Scopus, CrossRef and PubMed, please ensure that data provided in the references are correct. Please note that incorrect surnames, journal/book titles, publication year and pagination may prevent link creation. When copying references, please be careful as they may already contain errors. Use of the DOI is highly encouraged.

A DOI is guaranteed never to change, so you can use it as a permanent link to any electronic article. An example of a citation using DOI for an article not yet in an issue is: VanDecar J.C., Russo R.M., James D.E., Ambeh W.B., Franke M. (2003). Aseismic continuation of the Lesser Antilles slab beneath northeastern Venezuela. Journal of Geophysical Research, https://doi.org/10.1029/2001JB000884. Please note the format of such citations should be in the same style as all other references in the paper.

Web references
As a minimum, the full URL should be given and the date when the reference was last accessed. Any further information, if known (DOI, author names, dates, reference to a source publication, etc.), should also be given. Web references can be listed separately (e.g., after the reference list) under a different heading if desired, or can be included in the reference list.

Data references
This journal encourages you to cite underlying or relevant datasets in your manuscript by citing them in your text and including a data reference in your Reference List. Data references should include the following elements: author name(s), dataset title, data repository, version (where available), year, and global persistent identifier. Add [dataset] immediately before the reference so we can properly identify it as a data reference. The [dataset] identifier will not appear in your published article.

References in a special issue
Please ensure that the words 'this issue' are added to any references in the list (and any citations in the text) to other articles in the same Special Issue.
Reference management software
Most Elsevier journals have their reference template available in many of the most popular reference management software products. These include all products that support Citation Style Language styles, such as Mendeley. Using citation plug-ins from these products, authors only need to select the appropriate journal template when preparing their article, after which citations and bibliographies will be automatically formatted in the journal's style. If no template is yet available for this journal, please follow the format of the sample references and citations as shown in this Guide. If you use reference management software, please ensure that you remove all field codes before submitting the electronic manuscript. More information on how to remove field codes from different reference management software.

Users of Mendeley Desktop can easily install the reference style for this journal by clicking the following link:
http://open.mendeley.com/use-citation-style/dna-repair

When preparing your manuscript, you will then be able to select this style using the Mendeley plug-ins for Microsoft Word or LibreOffice.

Reference formatting
There are no strict requirements on reference formatting at submission. References can be in any style or format as long as the style is consistent. Where applicable, author(s) name(s), journal title/book title, chapter title/article title, year of publication, volume number/book chapter and the article number or pagination must be present. Use of DOI is highly encouraged. The reference style used by the journal will be applied to the accepted article by Elsevier at the proof stage. Note that missing data will be highlighted at proof stage for the author to correct. If you do wish to format the references yourself they should be arranged according to the following examples:

Video
Elsevier accepts video material and animation sequences to support and enhance your scientific research. Authors who have video or animation files that they wish to submit with their article are strongly encouraged to include links to these within the body of the article. This can be done in the same way as a figure or table by referring to the video or animation content and noting in the body text where it should be placed. All submitted files should be properly labeled so that they directly relate to the video file's content. In order to ensure that your video or animation material is directly usable, please provide the file in one of our recommended file formats with a preferred maximum size of 150 MB per file, 1 GB in total. Video and animation files supplied will be published online in the electronic version of your article in Elsevier Web products, including ScienceDirect. Please supply 'stills' with your files: you can choose any frame from the video or animation or make a separate image. These will be used instead of standard icons and will personalize the link to your video data. For more detailed instructions please visit our video instruction pages. Note: since video and animation cannot be embedded in the print version of the journal, please provide text for both the electronic and the print version for the portions of the article that refer to this content.

Supplementary data
Elsevier accepts electronic supplementary material to support and enhance your scientific research. Supplementary files offer the author additional possibilities to publish supporting applications, high-resolution images, background datasets, sound clips and more. Supplementary files supplied will be published online alongside the electronic version of your article in Elsevier Web products, including ScienceDirect: http://www.sciencedirect.com. In order to ensure that your submitted material is directly usable, please provide the data in one of our recommended file formats. Authors should submit the material in electronic format together with the article and supply a concise and descriptive caption for each file. For more detailed instructions please visit our artwork instruction pages at https://www.elsevier.com/artworkinstructions.

This policy notwithstanding, the journal prefers that information provided in manuscripts be largely if not exclusively confined to the main body of the article. If deemed necessary, Supplementary Material must therefore be limited and will be at the discretion of the Editor-in-Chief and Associate Editors.

Research data
This journal encourages and enables you to share data that supports your research publication where appropriate, and enables you to interlink the data with your published articles. Research data refers to the results of observations or experimentation that validate research findings. To facilitate reproducibility and data reuse, this journal also encourages you to share your software, code, models, algorithms, protocols, methods and other useful materials related to the project.
Below are a number of ways in which you can associate data with your article or make a statement about the availability of your data when submitting your manuscript. If you are sharing data in one of these ways, you are encouraged to cite the data in your manuscript and reference list. Please refer to the "References" section for more information about data citation. For more information on depositing, sharing and using research data and other relevant research materials, visit the research data page.

Data linking
If you have made your research data available in a data repository, you can link your article directly to the dataset. Elsevier collaborates with a number of repositories to link articles on ScienceDirect with relevant repositories, giving readers access to underlying data that gives them a better understanding of the research described.

There are different ways to link your datasets to your article. When available, you can directly link your dataset to your article by providing the relevant information in the submission system. For more information, visit the database linking page.

For supported data repositories a repository banner will automatically appear next to your published article on ScienceDirect.

In addition, you can link to relevant data or entities through identifiers within the text of your manuscript, using the following format: Database: xxxx (e.g., TAIR: AT1G01020; CCDC: 734053; PDB: 1XFN).

Mendeley Data
This journal supports Mendeley Data, enabling you to deposit any research data (including raw and processed data, video, code, software, algorithms, protocols, and methods) associated with your manuscript in a free-to-use, open access repository. During the submission process, after uploading your manuscript, you will have the opportunity to upload your relevant datasets directly to Mendeley Data. The datasets will be listed and directly accessible to readers next to your published article online.

For more information, visit the Mendeley Data for journals page.

Data in Brief
You have the option of converting any or all parts of your supplementary or additional raw data into one or multiple data articles, a new kind of article that houses and describes your data. Data articles ensure that your data is actively reviewed, curated, formatted, indexed, given a DOI and publicly available to all upon publication. You are encouraged to submit your article for Data in Brief as an additional item directly alongside the revised version of your manuscript. If your research article is accepted, your data article will automatically be transferred over to Data in Brief where it will be editorially reviewed and published in the open access data journal, Data in Brief. Please note an open access fee of 600 USD is payable for publication in Data in Brief. Full details can be found on the Data in Brief website. Please use this template to write your Data in Brief.

MethodsX
You have the option of converting relevant protocols and methods into one or multiple MethodsX articles, a new kind of article that describes the details of customized research methods. Many researchers spend a significant amount of time on developing methods to fit their specific needs or setting, but often without getting credit for this part of their work. MethodsX, an open access journal, now publishes this information in order to make it searchable, peer reviewed, citable and reproducible. Authors are encouraged to submit their MethodsX article as an additional item directly alongside the revised version of their manuscript. If your research article is accepted, your methods article will automatically be transferred over to MethodsX where it will be editorially reviewed. Please note an open access fee is payable for publication in MethodsX. Full details can be found on the MethodsX website. Please use this template to prepare your MethodsX article.

Data statement
To foster transparency, we encourage you to state the availability of your data in your submission. This may be a requirement of your funding body or institution. If your data is unavailable to access or unsuitable to post, you will have the opportunity to indicate why during the submission process, for example by stating that the research data is confidential. The statement will appear with your published article on ScienceDirect. For more information, visit the Data Statement page.
Additional Information
In papers mentioning chemicals, authors are requested to include CAS registry numbers.

AFTER ACCEPTANCE

Online proof correction
To ensure a fast publication process of the article, we kindly ask authors to provide us with their proof corrections within two days. Corresponding authors will receive an e-mail with a link to our online proofing system, allowing annotation and correction of proofs online. The environment is similar to MS Word: in addition to editing text, you can also comment on figures/tables and answer questions from the Copy Editor. Web-based proofing provides a faster and less error-prone process by allowing you to directly type your corrections, eliminating the potential introduction of errors.

If preferred, you can still choose to annotate and upload your edits on the PDF version. All instructions for proofing will be given in the e-mail we send to authors, including alternative methods to the online version and PDF.

We will do everything possible to get your article published quickly and accurately. Please use this proof only for checking the typesetting, editing, completeness and correctness of the text, tables and figures. Significant changes to the article as accepted for publication will only be considered at this stage with permission from the Editor. It is important to ensure that all corrections are sent back to us in one communication. Please check carefully before replying, as inclusion of any subsequent corrections cannot be guaranteed. Proofreading is solely your responsibility.

Offprints
The corresponding author will, at no cost, receive a customized Share Link providing 50 days free access to the final published version of the article on ScienceDirect. The Share Link can be used for sharing the article via any communication channel, including email and social media. For an extra charge, paper offprints can be ordered via the offprint order form which is sent once the article is accepted for publication. Both corresponding and co-authors may order offprints at any time via Elsevier's Author Services. Corresponding authors who have published their article gold open access do not receive a Share Link as their final published version of the article is available open access on ScienceDirect and can be shared through the article DOI link.

AUTHOR INQUIRIES
Visit the Elsevier Support Center to find the answers you need. Here you will find everything from Frequently Asked Questions to ways to get in touch.

You can also check the status of your submitted article or find out when your accepted article will be published.

© Copyright 2018 Elsevier | https://www.elsevier.com