Using drones to deliver vaccines could save money in developing countries

Deploying the unmanned vehicles could also boost vaccination rates, researchers say


Using drones to deliver vaccines in low- and middle-income countries could save money and improve vaccination rates, according to new research in the journal Vaccine.

The cost savings would come from drones being able to deliver vaccines more quickly and cheaply than land-based methods, which are limited by road conditions and the need for costly fuel and maintenance, note the researchers, from the Johns Hopkins Bloomberg School of Public Health and the Pittsburgh Supercomputing Center.

Bruce Y. Lee, MD, MBA, is associate professor at the Bloomberg School and director of operations research at its International Vaccine Access Center.“Many low- and middle-income countries are struggling to get lifesaving vaccines to people to keep them from getting sick or dying from preventable diseases,” said senior author Dr. Bruce Y. Lee, Associate Professor of International Health at the Bloomberg School and Director of Operations Research at its International Vaccine Access Center. “You make all these vaccines but they’re of no value if we don’t get them to the people who need them. So there is an urgent need to find new, cost-effective ways to do this.”

In low- and middle-income countries, there are many challenges faced by immunization programs, which provide childhood vaccines such as hepatitis B, tetanus, measles and rotavirus, and will be utilized in the future as vaccines for dengue, malaria and Zika are developed and brought to market. After entering a country, vaccine vials typically travel by road through two to four storage locations before arriving at clinics where health workers administer doses to patients. Most vaccines need to remain refrigerated until they are used or they will spoil. Non-vaccine costs of routine immunizations are expected to rise by 80 percent between 2010 and 2020, with more than one-third of costs attributable to supply chain logistics. Supply chain inefficiencies can mean that many vaccines don’t even reach the people who need them.

Meanwhile, unmanned drones have proliferated in recent years because they can traverse difficult terrain, reduce labor costs and replace fleets of vehicles. They have been used for surveillance and in humanitarian aid delivery and are now being developed to transport medical samples and supplies, though previously little has been known whether this is a cost-effective use of the new technology.

For their study, Dr. Lee and his colleagues created a HERMES computer model to simulate a traditional land-based transportation system – a combination of trucks, motorbikes and public transit – and compared it with an unmanned drone system for delivering vaccines as part of an immunization program. Seattle-based non-governmental organization VillageReach helped provide data for the model. They varied characteristics such as geography, population, road conditions and vaccine schedule in order to assess which conditions would most contribute to drones offering the biggest cost savings.

HERMES visualizations of the traditional multi-tiered land transport system (TMLTS) for distributing vaccines in Gaza province compared to the unmanned aerial system (UAS) modeled in Gaza. The traditional system in Gaza consists of three tiers (Figure 1A). One provincial store picks up vaccines from the national warehouse quarterly using a 4×4 truck (taking additional trips as needed, due to limited cold storage and transport capacity) and delivers monthly to 12 district stores. Districts distribute vaccines to 123 health centers each month using a combination of pick-up truck or motorbike deliveries and health workers traveling via public transit to pick up vaccines. Health workers administer vaccines to the population at each health center. One commercial UAS currently under development for the distribution of medical samples and health products utilizes fixed-wing, battery powered vehicles and fixed hubs for vaccine storage and the launching, recovery, storage, and maintenance of UAVs. We modeled a potential implementation of this system in Gaza province (Figure 1B) (Source: Bruce Y Lee et al, <em>Vaccine</em>, June 2016).

They found that using drones to get vaccines to the last stop on their journey – vaccination locations – could slightly improve vaccine availability, potentially immunizing 96 percent of the target population as compared to 94 percent using land-based transport while producing significant savings: 8 cents for every dose administered (roughly a 20 percent savings). To save money, the drones would need to carry at least .4 liters of vaccines, and the researchers say that the drones could carry at least 1.5 liters. If there were no flight delays for scheduled drone deliveries and the drones carried 1.5 liters, the researchers noted, each flight could cost up to $8.93, and annual infrastructure and overhead costs could cost up to $60,000 and still produce savings. As a comparison, the researchers studied the traditional land-based immunization system in Mozambique, which has achieved 94 percent vaccine coverage, but they note that many countries currently cover fewer than 60 percent of the population using land-based approaches.

“Currently, in many locations, vehicles that transport vaccines aren’t always available or reliable,” Dr. Lee said. “Assuming that drones are reliable, are capable of making the necessary trips and have properly trained operators, they could be a less expensive means of transporting vaccines, especially in remote areas. They could be particularly valuable when there is more demand for certain vaccines than anticipated and immunization locations must place urgent orders.”

While the computer models are good at theoretically analyzing the cost effectiveness of drone technology, the researchers said real-world testing must be done to make sure that drones are a viable way to transport vaccines. And many obstacles may exist. Regulatory issues could limit the ability of drones to deliver goods and commodities. Maintaining and operating the equipment would require specialized tools and skills that may be difficult to access in these developing countries. Since no person would accompany a shipment, greater coordination would be needed between those shipping and those receiving the vaccines. Appropriate packing to maintain vaccine quality would need to be developed.

Drones are currently being tested for medical supply deliveries in rural Virginia, Bhutan and Papua New Guinea. UNICEF is testing the feasibility of using them to transport lab samples in Malawi. And in Tanzania, there are efforts afoot to transport blood and essential medications.

Read the study

Elsevier has made this article freely available until September 23, 2016:

Leila A. Haidari, MPH; Shawn T. Brown, PhD; Marie Ferguson, MSPH; Emily Bancroft, MPH; Marie Spiker, MSPH; Allen Wilcox, JD; Ramya Ambikapathi, MHS; Vidya Sampath, MSPH; Diana L. Connor, MPH and Bruce Y. Lee, MD, MBA: “The Economic and Operational Value of Using Drones to Transport Vaccines,” Vaccine (June 2016)

The research was supported by the Bill and Melinda Gates Foundation, the Agency for Healthcare Research and Quality and the Eunice Kennedy Shriver National Institute of Child Health and Human Development.

The journal

Vaccine is the preeminent journal for those interested in vaccines and vaccination. It’s published by Elsevier.


Written by

Elsevier Connect

Written by

Elsevier Connect

This site features daily stories for the global science, health and technology communities, written by experts in the field as well as Elsevier colleagues.

Related stories


comments powered by Disqus