COVID-19 Update: We are currently shipping orders daily. However, due to transit disruptions in some geographies, deliveries may be delayed. To provide all customers with timely access to content, we are offering 50% off Science and Technology Print & eBook bundle options. Terms & conditions.
Working with Dynamic Crop Models - 3rd Edition - ISBN: 9780128117569, 9780128117576

Working with Dynamic Crop Models

3rd Edition

Methods, Tools and Examples for Agriculture and Environment

Authors: Daniel Wallach David Makowski James Jones Francois Brun
eBook ISBN: 9780128117576
Hardcover ISBN: 9780128117569
Imprint: Academic Press
Published Date: 27th September 2018
Page Count: 613
Sales tax will be calculated at check-out Price includes VAT/GST
Price includes VAT/GST

Institutional Subscription

Secure Checkout

Personal information is secured with SSL technology.

Free Shipping

Free global shipping
No minimum order.


Working with Dynamic Crop Models: Methods, Tools and Examples for Agriculture and Environment, 3e, is a complete guide to working with dynamic system models, with emphasis on models in agronomy and environmental science. The introductory section presents the foundational information for the book including the basics of system models, simulation, the R programming language, and the statistical notions necessary for working with system models. The most important methods of working with dynamic system models, namely uncertainty and sensitivity analysis, model calibration (frequentist and Bayesian), model evaluation, and data assimilation are all treated in detail, in individual chapters.

New chapters cover the use of multi-model ensembles, the creation of metamodels that emulate the more complex dynamic system models, the combination of genetic and environmental information in gene-based crop models, and the use of dynamic system models to aid in sampling.

The book emphasizes both understanding and practical implementation of the methods that are covered. Each chapter simply and clearly explains the underlying principles and assumptions of each method that is presented, with numerous examples and illustrations. R code for applying the methods is given throughout. This code is designed so that it can be adapted relatively easily to new problems.

Key Features

  • An expanded introductory section presents the basics of dynamic system modeling, with numerous examples from multiple fields, plus chapters on numerical simulation, statistics for modelers, and the R language
  • Covers in detail the basic methods: uncertainty and sensitivity analysis, model calibration (both frequentist and Bayesian), model evaluation, and data assimilation
  • Every method chapter has numerous examples of applications based on real problems, as well as detailed instructions for applying the methods to new problems using R
  • Each chapter has multiple exercises for self-testing or for classroom use
  • An R package with much of the code from the book can be freely downloaded from the CRAN package repository


Researchers and advanced students in agronomy, agricultural and biological engineering, agricultural economics and agricultural statistics

Table of Contents

Section A Background
1. Basics of Agricultural System Models
2. The R Programming Language and Software
3. Simulation with Dynamic System Models
4. Statistical Notions Useful for Modeling
5. Regression Analysis, Frequentist

Section B Basic methods
6. Uncertainty and Sensitivity Analysis
7. Calibration of System Models

8. Parameter Estimation With Bayesian Methods
9. Model Evaluation
10. Putting It All Together in a Case Study

Section C Advanced Methods
11. Metamodeling
12. Multimodel Ensembles
13. Gene-Based Crop Models
14. Data Assimilation for Dynamic Models
15. Models as an Aid to Sampling

Appendix 1:   The Models Included in the ZeBook R Package: Description, R Code, and Examples of Results

Appendix 2:  An Overview of the R Package ZeBook


No. of pages:
© Academic Press 2019
27th September 2018
Academic Press
eBook ISBN:
Hardcover ISBN:

About the Authors

Daniel Wallach

Daniel Wallach focuses on the application of statistical methods of dynamic systems, specifically on agronomy models. He has published in Agriculture, Ecosystems and Environment; Journal of Agricultural, Biological and Environmental Statistics and European Journal of Agronomy.

Affiliations and Expertise

Institut National de la Recherche Agronomique INRA, UMR INRA/INP, Toulouse, France

David Makowski

David Makowski is an expert with the European Food Safety authority and the French Agency for Food, Environmental and Occupational Health and Safety and has authored 50 refereed articles and 10 book chapters on statistics, agricultural modeling and risk analysis.

Affiliations and Expertise

Institut National de la Recherche Agronomique INRA, UMR INRA/INA, Thiverval-Grignon, France

James Jones

James Jones has authored more than 250 refereed scientific journal articles, developed and teached a graduate course based mostly on this book. He is a Fellow of the American Society of Agricultural and Biological Engineers, Fellow of the American Society of Agronomy, Fellow of the Soil Science Society of America and serves on several international science advisory committees related to agriculture and climate.

Affiliations and Expertise

Agricultural and Biological Engineering Department, University of Florida, Gainesville, FL, USA

Francois Brun

Francois Brun specializes in agricultural modeling systems using the R language, and has published in Journal of Experimental Botany.

Affiliations and Expertise

ACTA-INRA Toulouse, Castanet Tolosan, France

Ratings and Reviews