Vibration of Mindlin Plates

Vibration of Mindlin Plates

Programming the p-Version Ritz Method

1st Edition - November 10, 1998

Write a review

  • Authors: K.M. Liew, Y. Xiang, S. Kitipornchai, C.M. Wang
  • Hardcover ISBN: 9780080433417
  • eBook ISBN: 9780080543543

Purchase options

Purchase options
Available
DRM-free (PDF)
Sales tax will be calculated at check-out

Institutional Subscription

Free Global Shipping
No minimum order

Description

Over the last several years, the four authors have jointly conducted research into the analysis of vibrating Mindlin plates as a collaborative project between Nanyang Technological University, The National University of Singapore, and The University of Queensland. The research was prompted by the fact that there is a dearth of vibration results for Mindlin plates when compared to classical thin plate solutions. To generate the vibration results, the authors have successfully employed the Ritz method for general plate shapes and boundary conditions. The Ritz method, once thought to be awkward for general plate analysis, can be automated through suitable trial functions (for displacements) that satisfy the geometric plate boundary conditions a priori. This work has been well-received by academics and researchers, as indicated by the continual requests for the authors' papers and the Ritz software codes. This monograph is written with the view to share this so-called p-Ritz method for the vibration analysis of Mindlin plates and its software codes with the research community. To the authors' knowledge, the monograph contains the first published Ritz plate software codes of its kind.

Readership

For mechanical, materials, structural and civil engineers with a particular interest in computational mechanics.

Table of Contents

  • Preface. Introduction. Background of vibration. Plate vibration. About this monograph. Mindlin Plate Theory and Ritz Method. Mindlin plate theory. Energy functionals. Governing differential equations. Boundary conditions. Relations between Kirchhoff and Mindlin plates. Reduction of Mindlin theory to Kirchhoff. Frequency relationship for a class of plates. Shear correction factor. Ritz method. Preliminary remarks. Application of Ritz method to Mindlin plates. Formulation in Polar Coordinates. Introduction. Energy functionals. Eigenvalue equation. Circular and annular plates. Sectorial and annular sectorial plates. Computer program. Software code: VPRITZP1. Sample files for VPRITZP1. Software code: VPRITZP2. Sample files for VPRITZP2. Benchmark checks. Annular plates. Sectorial plates. Annular sectorial plates. Formulation in Rectangular Coordinates. Introduction. Energy functionals. Eigenvalue equation. Computer program. Software code: VPRITZRE. Input file. Output file. Benchmark checks. Isosceles triangular plates. Trapezoidal plates. Elliptical plates. Formulation in Skew Coordinates. Introduction. Skew coordinates transformation. Energy functional in skew coordinates. Eigenvalue equation. Computer program. Software code: VPRITZSK. Sample files. Benchmark checks. Plates with Complicating Effects. Introduction. Initial inplane stresses. Elastic foundations. Stiffeners. Nonuniform thickness. Line/curved/loop internal supports. Point supports. Mixed boundary conditions. Reentrant corners. Perforated plates. Sandwich construction. References. Appendix I - Gaussian quadrature subroutines. Appendix II - Subroutines for mathematical operations on polynomials. Subject index.

Product details

  • No. of pages: 412
  • Language: English
  • Copyright: © Elsevier Science 1998
  • Published: November 10, 1998
  • Imprint: Elsevier Science
  • Hardcover ISBN: 9780080433417
  • eBook ISBN: 9780080543543

About the Authors

K.M. Liew

Kim Meow Liew is the Head and Chair Professor of Civil Engineering at City University of Hong Kong, Hong Kong. His research activities encompass computational mechanics, optimization, numerical methods, nanomechanics and nanomaterials, multi-scale modeling, simulation and bioengineering. He is the Editor-in-Chief of International Review of Civil Engineering (Praiseworthy Prize) and Journal of Modeling in Mechanics & Materials (De Gruyter) and Associate Editor of Journal of Vibration and Control (Sage) and Journal of Nanoscience Letters (Simplex Academic Publishers). He serves on the editorial boards for more than two dozen journals. He has contributed over 750 articles to peer-reviewed journals, and is a Fellow of the HKIE (Hong Kong), ASME (USA), IMechE (UK) and IES (Singapore). He is listed by the Institute for Scientific Information (ISI) as a Highly Cited Researcher in engineering.

Affiliations and Expertise

Head and Chair Professor of Civil Engineering, City University of Hong Kong, Hong Kong

Y. Xiang

Affiliations and Expertise

School of Civic Engineering and Environment, The University of Western Sydney, Nepean, Kingswood, Australia

S. Kitipornchai

Affiliations and Expertise

Department of Civil Engineering, The University of Queensland, Brisbane, Australia

C.M. Wang

Affiliations and Expertise

Department of Civil Engineering, The National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260

Ratings and Reviews

Write a review

There are currently no reviews for "Vibration of Mindlin Plates"